Jeffrey I Boucher

Learn More
Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this(More)
The last decade has seen a growing number of experiments aimed at systematically mapping the effects of mutations in different proteins, and of attempting to correlate their biophysical and biochemical effects with organismal fitness. While insightful, systematic laboratory measurements of fitness effects present challenges and difficulties. Here, we(More)
High-throughput sequencing has enabled many powerful approaches in biological research. Here, we review sequencing approaches to measure frequency changes within engineered mutational libraries subject to selection. These analyses can provide direct estimates of biochemical and fitness effects for all individual mutations across entire genes (and likely(More)
Aberrant epidermal growth factor receptor (EGFR, ErbB1) signaling is implicated in cell transformation, motility, and invasion in a variety of cell types, and EGFR is the target of several anticancer drugs. However, the kinetics of EGFR signaling and the individual contributions of site-specific phosphorylation events remain largely unknown. A(More)
Developing tools to accurately predict the clinical prevalence of drug-resistant mutations is a key step toward generating more effective therapeutics. Here we describe a high-throughput CRISPR-Cas9-based saturated mutagenesis approach to generate comprehensive libraries of point mutations at a defined genomic location and systematically study their effect(More)
A variety of human diseases including Malaria are caused by unicellular eukaryotes of the genus Apicomplexa, which have evolved highly specific lactate dehydrogenase (LDH) from malate dehydrogenase (MDH). The importance of LDH to the parasitic life cycles of modern Apicomplexans makes it a major drug target. The presence of a promiscuous intermediate in the(More)
Mouse macrophage NO-synthase (mNOS) was expressed in a unique yeast-based system by using a three-step procedure which allows yeast growth and NOS expression to be uncoupled. Despite cytotoxic effects related to mNOS expression, levels of catalytically active enzyme up to 0.5 mg of protein per 5 L of culture was obtained after purification. Its(More)
  • 1