Learn More
Cells must respond to an array of environmental and developmental cues. The signaling networks that have evolved to generate appropriate cellular responses are varied and are normally composed of elements that include a sequence of receptors, nonprotein messengers, enzymes and transcription factors. Receptors are normally highly specific for the(More)
Arabidopsis thaliana has eight genes encoding members of the type 1(B) heavy metal-transporting subfamily of the P-type ATPases. Three of these transporters, HMA2, HMA3, and HMA4, are closely related to each other and are most similar in sequence to the divalent heavy metal cation transporters of prokaryotes. To determine the function of these transporters(More)
The reproductive (gametophytic) phase in flowering plants is often highly sensitive to hot or cold temperature stresses, with even a single hot day or cold night sometimes being fatal to reproductive success. This review describes studies of temperature stress on several crop plants, which suggest that pollen development and fertilization may often be the(More)
Understanding the functional connections between genes, proteins, metabolites and mineral ions is one of biology's greatest challenges in the postgenomic era. We describe here the use of mineral nutrient and trace element profiling as a tool to determine the biological significance of connections between a plant's genome and its elemental profile. Using(More)
PlantsP and PlantsT allow users to quickly gain a global understanding of plant phosphoproteins and plant membrane transporters, respectively, from evolutionary relationships to biochemical function as well as a deep understanding of the molecular biology of individual genes and their products. As one database with two functionally different web interfaces,(More)
BACKGROUND Nutrient minerals are essential yet potentially toxic, and homeostatic mechanisms are required to regulate their intracellular levels. We describe here a genome-wide screen for genes involved in the homeostasis of minerals in Saccharomyces cerevisiae. Using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), we assayed 4,385 mutant(More)
Controlling elemental composition is critical for plant growth and development as well as the nutrition of humans who utilize plants for food. Uncovering the genetic architecture underlying mineral ion homeostasis in plants is a critical first step towards understanding the biochemical networks that regulate a plant's elemental composition (ionome). Natural(More)
The Arabidopsis thaliana genome contains 20 CNGCs, which are proposed to encode cyclic nucleotide gated, non-selective, Ca²⁺-permeable ion channels. CNGC7 and CNGC8 are the two most similar with 74% protein sequence identity, and both genes are preferentially expressed in pollen. Two independent loss-of-function T-DNA insertions were identified for both(More)
The PlantsP database is a curated database that combines information derived from sequences with experimental functional genomics information. PlantsP focuses on plant protein kinases and protein phosphatases. The database will specifically provide a resource for information on a collection of T-DNA insertion mutants (knockouts) in each protein kinase and(More)
Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella(More)