Jeffrey F. D. Dean

Learn More
The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination. We develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of(More)
Current understanding of the final oxidative steps leading to lignin deposition in trees and other higher plants is limited with respect to what enzymes are involved, where they are localized, how they are transported, and what factors regulate them. With the use of cell suspension cultures of sycamore maple (Acer pseudoplatanus), an in-depth study of(More)
A gene (yacK) encoding a putative multicopper oxidase (MCO) was cloned from Escherichia coli, and the expressed enzyme was demonstrated to exhibit phenoloxidase and ferroxidase activities. The purified protein contained six copper atoms per polypeptide chain and displayed optical and electron paramagnetic resonance (EPR) spectra consistent with the presence(More)
Lignin peroxidase is generally considered to be a primary catalyst for oxidative depolymerization of lignin by white-rot fungi. However, some white-rot fungi lack lignin peroxidase. Instead, many produce laccase, even though the redox potentials of known laccases are too low to directly oxidize the non-phenolic components of lignin. Pycnoporus cinnabarinus(More)
Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used(More)
Wood formation has been studied extensively at the cellular and biochemical levels, but remains poorly understood with respect to gene expression and regulation. As a first step toward identifying genes specifically involved in wood formation and characterizing their roles in determining wood quality, serial analysis of gene expression (SAGE) was used to(More)
Laccases (p-diphenol:O, oxidoreductase, EC 1.1 0.3.2) are m,embers of a highly conserved class of metalloenzymes, the ”blue” copper oxidases, which includes ascorbate oxidase and ceruloplasmin (Rydén and Hunt, 1993). First identified more than 100 years ago in extracts of sap from the Japanese lacquer tree (Rhus vernicifera), laccases have since been(More)
It was recently shown that the white rot basidiomycete Pycnoporus cinnabarinus secretes an unusual set of phenoloxidases when it is grown under conditions that stimulate ligninolysis (C. Eggert, U. Temp, and K.-E. L. Eriksson, Appl. Environ. Microbiol. 62:1151-1158, 1996). In this report we describe the results of a cloning and structural analysis of the(More)
Serial analysis of gene expression was used to profile transcript levels in Arabidopsis roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and each was sequenced to a depth of roughly 32,000 tags. More than 19,000 unique tags were(More)
The phenoxazinone chromophore occurs in a variety of biological systems, including numerous pigments and certain antibiotics. It also appears to form as part of a mechanism to protect mammalian tissue from oxidative damage. During cultivation of the basidiomycete, Pycnoporus cinnabarinus, a red pigment was observed to accumulate in the culture medium. It(More)