Jeffrey F. Cohn

Learn More
In 2000, the Cohn-Kanade (CK) database was released for the purpose of promoting research into automatically detecting individual facial expressions. Since then, the CK database has become one of the most widely used test-beds for algorithm development and evaluation. During this period, three limitations have become apparent: 1) While AU codes are well(More)
Within the past decade, significant effort has occurred in developing methods of facial expression analysis. Because most investigators have used relatively limited data sets, the generalizability of these various methods remains unknown. We describe the problem space for facial expression analysis, which includes level of description, transitions among(More)
A close relationship exists between the advancement of face recognition algorithms and the availability of face databases varying factors that affect facial appearance in a controlled manner. The CMU PIE database has been very influential in advancing research in face recognition across pose and illumination. Despite its success the PIE database has several(More)
Deformable model fitting has been actively pursued in the computer vision community for over a decade. As a result, numerous approaches have been proposed with varying degrees of success. A class of approaches that has shown substantial promise is one that makes independent predictions regarding locations of the model’s landmarks, which are combined by(More)
Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an(More)
A major factor hindering the deployment of a fully functional automatic facial expression detection system is the lack of representative data. A solution to this is to narrow the context of the target application, so enough data is available to build robust models so high performance can be gained. Automatic pain detection from a patient’s face represents(More)
Deformable model fitting has been actively pursued in the computer vision community for over a decade. As a result, numerous approaches have been proposed with varying degrees of success. A class of approaches that has shown substantial promise is one that makes independent predictions regarding locations of the model's landmarks, which are combined by(More)
Access to well-labeled recordings of facial expression is critical to progress in automated facial expression recognition. With few exceptions, publicly available databases are limited to posed facial behavior that can differ markedly in conformation, intensity, and timing from what occurs spontaneously. To meet the need for publicly available corpora of(More)
Most studies investigating the recognition of facial expressions have focused on static displays of intense expressions. Consequently, researchers may have underestimated the importance of motion in deciphering the subtle expressions that permeate real-life situations. In two experiments, we examined the effect of motion on perception of subtle facial(More)
Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/ tracking in comparison to leading holistic approaches (e.g., AAMs). A major problem hindering the development of CLMs further, for non-rigid object alignment/tracking, is how to jointly optimize the global warp update across all local search responses.(More)