Jeffrey E. Squires

Learn More
The modified base 5-methylcytosine (m(5)C) is well studied in DNA, but investigations of its prevalence in cellular RNA have been largely confined to tRNA and rRNA. In animals, the two m(5)C methyltransferases NSUN2 and TRDMT1 are known to modify specific tRNAs and have roles in the control of cell growth and differentiation. To map modified cytosine sites(More)
Blunted beta-adrenergic inotropism in stunned myocardium is restored by pharmacological (N-acetylcysteine) and metabolic (pyruvate) antioxidants. The ketone body acetoacetate is a natural myocardial fuel and antioxidant that improves contractile function of prooxidant-injured myocardium. The impact of acetoacetate on postischemic cardiac function and(More)
PURPOSE Pyruvate, a natural energy-yielding fuel in myocardium, neutralizes peroxides by a direct decarboxylation reaction, and indirectly augments the glutathione (GSH) antioxidant system by generating NADPH reducing power via citrate formation. The possibility that pyruvate's antioxidant actions could mediate its enhancement of contractile performance in(More)
Modified nucleosides play an important role in RNA function and have been identified in multiple RNA types, including tRNAs, rRNAs, mRNAs and small regulatory RNAs. Among these, 5-methylcytosine (m(5)C) has been detected in rRNAs and tRNAs, and early reports suggested its presence in mRNAs. Known and well studied as an epigenetic mark in DNA, the prevalence(More)
  • 1