Learn More
Glucose flux through the hexosamine biosynthetic pathway leads to the post-translational modification of cytoplasmic and nuclear proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc). This tandem system serves as a nutrient sensor to couple systemic metabolic status to cellular regulation of signal transduction, transcription, and protein degradation.(More)
Transcription factors and RNA polymerase II can be modified by O-linked N-acetylglucosamine (O-GlcNAc) monosaccharides at serine or threonine residues, yet the precise functional roles of this modification are largely unknown. Here, we show that O-GlcNAc transferase (OGT), the enzyme that catalyzes this posttranslational modification, interacts with a(More)
The ubiquitin proteasome system classically selects its substrates for degradation by tagging them with ubiquitin. Here, we describe another means of controlling proteasome function in a global manner. The 26S proteasome can be inhibited by modification with the enzyme, O-GlcNAc transferase (OGT). This reversible modification of the proteasome inhibits the(More)
All tissues contain the enzymes that modify and remove O-GlcNAc dynamically from nucleocytoplasmic proteins. These enzymes have been shown to play a role in the control of transcription, vesicular trafficking and, more recently, proteasome function. Modification by O-GlcNAc of the 19S cap of the proteasome inhibits proteasomal function. Transcripts of both(More)
Type 2 diabetes mellitus results from a complex interaction between nutritional excess and multiple genes. Whereas pancreatic beta-cells normally respond to glucose challenge by rapid insulin release (first phase insulin secretion), there is a loss of this acute response in virtually all of the type 2 diabetes patients with significant fasting(More)
Abstrad The human immunodeficiency virus 1 (HIV-1) tat gene encodes a protein of critical importance for viral transcription. In addition, Tat has been shown capable of entering cells, stimulating cell proliferation, and altering host cell gene expression. We examined the effed of Tat on the expression of the transforming growth factor a (TGF-a) gene in(More)
  • 1