Learn More
MapReduce is a programming model and an associated implementation for processing and generating large datasets that is amenable to a broad variety of real-world tasks. Users specify the computation in terms of a <i>map</i> and a <i>reduce</i> function, and the underlying runtime system automatically parallelizes the computation across large-scale clusters(More)
The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the(More)
We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in(More)
Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth, and Google Finance. These applications place very different demands on Bigtable, both in terms of(More)
TensorFlow [1] is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds(More)
Recent work in unsupervised feature learning and deep learning has shown that being able to train large models can dramatically improve performance. In this paper, we consider the problem of training a deep network with billions of parameters using tens of thousands of CPU cores. We have developed a software framework called DistBelief that can utilize(More)
Modern visual recognition systems are often limited in their ability to scale to large numbers of object categories. This limitation is in part due to the increasing difficulty of acquiring sufficient training data in the form of labeled images as the number of object categories grows. One remedy is to leverage data from other sources – such as text data –(More)
A very simple way to improve the performance of almost any machine learning algorithm is to train many different models on the same data and then to average their predictions [3]. Unfortunately, making predictions using a whole ensemble of models is cumbersome and may be too computationally expensive to allow deployment to a large number of users,(More)
This paper reports on the benefits of large-scale statistical language modeling in machine translation. A distributed infrastructure is proposed which we use to train on up to 2 trillion tokens, resulting in language models having up to 300 billion n-grams. It is capable of providing smoothed probabilities for fast, single-pass decoding. We introduce a new(More)