Learn More
The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression,(More)
Establishment of left-right asymmetry in the mouse embryo depends on leftward laminar fluid flow in the node, which initiates a signaling cascade that is confined to the left side of the embryo. Leftward fluid flow depends on two cellular processes: motility of the cilia that generate the flow and morphogenesis of the node, the structure where the cilia(More)
Proteins of the Hedgehog (Hh) family act as important developmental signals in a variety of species [1]. Hh proteins are synthesized as full-length precursors that are autocatalytically cleaved by their C-terminal domains to release the signaling N-terminal domains [2]. The addition of a cholesterol molecule to the C terminus of the signaling domain is(More)
The wave of differentiation that traverses the Drosophila eye disc requires rapid transitions in gene expression that are controlled by a number of signaling molecules also required in other developmental processes. We have used a mosaic genetic screen to systematically identify autosomal genes required for the normal pattern of photoreceptor(More)
BACKGROUND Neurologic and clinical morbidity after coronary artery bypass grafting (CABG) can be significant. By avoiding cardiopulmonary bypass, off-pump CABG (OPCAB) may reduce morbidity. METHODS Sixty patients (30 CABG and 30 OPCAB) were prospectively randomized. Neurocognitive testing was performed before the operation and 2 weeks and 1 year after the(More)
The posteriorly expressed signaling molecules Hedgehog and Decapentaplegic drive photoreceptor differentiation in the Drosophila eye disc, while at the anterior lateral margins Wingless expression blocks ectopic differentiation. We show here that mutations in axin prevent photoreceptor differentiation and lead to tissue overgrowth and that both these(More)
During early mouse development, a single-layered epithelium is transformed into the three germ layers that are the basis of the embryonic body plan. Here we describe an ENU-induced mutation, limulus (lulu), which disrupts gastrulation and the organization of all three embryonic germ layers. Positional cloning and analysis of additional alleles show that(More)
The Drosophila Hedgehog protein and its vertebrate counterpart Sonic hedgehog are required for a wide variety of patterning events throughout development. Hedgehog proteins are secreted from cells and undergo autocatalytic cleavage and cholesterol modification to produce a mature signaling domain. This domain of Sonic hedgehog has recently been shown to(More)
Extracellular signal regulated kinase 5 (ERK5) is a novel member of the mitogen-activated protein kinase (MAPK) family with a poorly defined physiological function. Since ERK5 and its upstream activator MEK5 are abundant in skeletal muscle we examined a function of the cascade during muscle differentiation. We show that ERK5 is activated upon induction of(More)
Many aspects of the genetic control of mammalian embryogenesis cannot be extrapolated from other animals. Taking a forward genetic approach, we have induced recessive mutations by treatment of mice with ethylnitrosourea and have identified 43 mutations that affect early morphogenesis and patterning, including 38 genes that have not been studied previously.(More)