Jeffrey B. Stetz

Learn More
We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance(More)
A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data(More)
Using multiple detection methods can increase the number, kind, and distribution of individuals sampled, which may increase accuracy and precision and reduce cost of population abundance estimates. However, when variables influencing abundance are of interest, if individuals detected via different methods are influenced by the landscape differently,(More)
Genetic diversity is the foundation for all biological diversity ; the persistence and evolutionary potential of species depend on it. World leaders have agreed on the conservation of genetic diversity as an explicit goal of the Convention on Biological Diversity (CBD). Nevertheless, actions to protect genetic diversity are largely lacking. With only months(More)
Many North American river otter (Lontra canadensis) populations are threatened or recovering but are difficult to study because they occur at low densities, it is difficult to visually identify individuals, and they inhabit aquatic environments that accelerate degradation of biological samples. Single nucleotide polymorphisms (SNPs) can improve our ability(More)
  • 1