Learn More
The single transmembrane domain serine/threonine kinase activin receptor type IIB (ActRIIB) has been proposed to bind key regulators of skeletal muscle mass development, including the ligands GDF-8 (myostatin) and GDF-11 (BMP-11). Here we provide a detailed kinetic characterization of ActRIIB binding to several low and high affinity ligands using a soluble(More)
Activin receptor-like kinase 1 (ALK1), an endothelial cell-specific type I receptor of the TGF-β superfamily, is an important regulator of normal blood vessel development as well as pathological tumor angiogenesis. As such, ALK1 is an important therapeutic target. Thus, several ALK1-directed agents are currently in clinical trials as anti-angiogenic cancer(More)
Androgen deprivation, a consequence of hypogonadism, certain cancer treatments, or normal aging in men, leads to loss of muscle mass, increased adiposity, and osteoporosis. In the present study, using a soluble chimeric form of activin receptor type IIB (ActRIIB) we sought to offset the adverse effects of androgen deprivation on muscle, adipose tissue, and(More)
Diseases that affect the regulation of bone turnover can lead to skeletal fragility and increased fracture risk. Members of the TGF-beta superfamily have been shown to be involved in the regulation of bone mass. Activin A, a TGF-beta signaling ligand, is present at high levels in bone and may play a role in the regulation of bone metabolism. Here we(More)
BACKGROUND Myostatin, also known as Growth and Differentiation Factor 8, is a secreted protein that inhibits muscle growth. Disruption of myostatin signaling increases muscle mass and decreases glucose, but it is unclear whether these changes are related. We treated mice on chow and high-fat diets with a soluble activin receptor type IIB (ActRIIB, RAP-031),(More)
Activin A belongs to the TGF-beta superfamily and plays an important role in bone metabolism. It was reported that a soluble form of extracellular domain of the activin receptor type IIA (ActRIIA) fused to the Fc domain of murine IgG, an activin antagonist, has an anabolic effect on bone in intact and ovariectomized mice. The present study was designed to(More)
Obesity results from disproportionately high energy intake relative to energy expenditure. Many therapeutic strategies have focused on the intake side of the equation, including pharmaceutical targeting of appetite and digestion. An alternative approach is to increase energy expenditure through physical activity or adaptive thermogenesis. A pharmacological(More)
Activin receptor-like kinase-1 (ALK1) is a type I, endothelial cell-specific member of the transforming growth factor-beta superfamily of receptors known to play an essential role in modulating angiogenesis and vessel maintenance. In the present study, we sought to examine the angiogenic and tumorigenic effects mediated upon the inhibition of ALK1 signaling(More)
INTRODUCTION In this study we investigated the action of RAP-031, a soluble activin receptor type IIB (ActRIIB) comprised of a form of the ActRIIB extracellular domain linked to a murine Fc, and the NF-κB inhibitor, ursodeoxycholic acid (UDCA), on the whole body strength of mdx mice. METHODS The whole body tension (WBT) method of assessing the forward(More)
A recent study suggests that activin inhibits bone matrix mineralization, whereas treatment of mice with a soluble form of the activin type IIA receptor markedly increases bone mass and strength. To further extend these observations, we determined the skeletal effects of inhibiting activin signaling through the ActRIIA receptor in a large animal model with(More)