Jeffrey A. Nickerson

Learn More
The nuclear matrix is concealed by a much larger mass of chromatin, which can be removed selectively by digesting nuclei with DNase I followed by elution of chromatin with 0.25 M ammonium sulfate. This mild procedure removes chromatin almost completely and preserves nuclear matrix morphology. The complete nuclear matrix consists of a nuclear lamina with an(More)
mAbs raised against the human nuclear matrix (anti-NM)1 mAbs have been used to investigate the role of nuclear matrix antigens in pre-mRNA processing. The three anti-NM mAbs used in this study recognize antigens that are highly localized to nuclear matrix speckles. Surprisingly, all three of these mAbs preferentially immunoprecipitate splicing complexes(More)
DEK is an approximately 45-kD phosphoprotein that is fused to the nucleoporin CAN as a result of a (6;9) chromosomal translocation in a subset of acute myeloid leukemias (AMLs). It has also been identified as an autoimmune antigen in juvenile rheumatoid arthritis and other rheumatic diseases. Despite the association of DEK with several human diseases, its(More)
The major-histocompatibility-complex protein UAP56 (BAT1) is a DEAD-box helicase that is deposited on mRNA during splicing. UAP56 is retained on spliced mRNA in an exon junction complex (EJC) or, alternatively, with the TREX complex at the 5' end, where it might facilitate the export of the spliced mRNA to the cytoplasm. Using confocal microscopy, UAP56 was(More)
Amyotrophic lateral sclerosis (ALS)-linked fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is concentrated within cytoplasmic stress granules under conditions of induced stress. Since only the mutants, but not the endogenous wild-type FUS, are associated with stress granules under most of the stress conditions reported to date, the(More)
We present a new in vitro system for characterizing the binding and mobility of enhanced green fluorescent protein (EGFP)-labeled nuclear proteins by fluorescence recovery after photobleaching in digitonin-permeabilized cells. This assay reveals that SRm160, a splicing coactivator and component of the exon junction complex (EJC) involved in RNA export, has(More)
Regulation of ribosomal RNA genes is a fundamental process that supports the growth of cells and is tightly coupled with cell differentiation. Although rRNA transcriptional control by RNA polymerase I (Pol I) and associated factors is well studied, the lineage-specific mechanisms governing rRNA expression remain elusive. Runt-related transcription factors(More)
Dipeptide repeat (DPR) proteins are toxic in various models of FTD/ALS with GGGGCC (G4C2) repeat expansion. However, it is unclear whether nuclear G4C2 RNA foci also induce neurotoxicity. Here, we describe a Drosophila model expressing 160 G4C2 repeats (160R) flanked by human intronic and exonic sequences. Spliced intronic 160R formed nuclear G4C2 sense RNA(More)
The transcription factor Runx2 is highly expressed in breast cancer cells compared with mammary epithelial cells and contributes to metastasis. Here we directly show that Runx2 expression promotes a tumor cell phenotype of mammary acini in three-dimensional culture. Human mammary epithelial cells (MCF-10A) form polarized, growth-arrested, acini-like(More)
Changes in nuclear morphology occur during normal development and have been observed during the progression of several diseases. The shape of a nucleus is governed by the balance of forces exerted by nuclear-cytoskeletal contacts and internal forces created by the structure of the chromatin and nuclear envelope. However, factors that regulate the balance of(More)