Jeffrey A. Magee

Learn More
Appendage formation is organized by signals from discrete sources that presumably act upon downstream genes to control growth and patterning. The Drosophila vestigial gene is selectively required for wing-cell proliferation, and is sufficient to induce outgrowths of wing tissue from eyes, legs and antennae. Different signals activate separate enhancers to(More)
The differentiation of tumorigenic cancer stem cells into nontumorigenic cancer cells confers heterogeneity to some cancers beyond that explained by clonal evolution or environmental differences. In such cancers, functional differences between tumorigenic and nontumorigenic cells influence response to therapy and prognosis. However, it remains uncertain(More)
Many aspects of cellular physiology remain unstudied in somatic stem cells, for example, there are almost no data on protein synthesis in any somatic stem cell. Here we set out to compare protein synthesis in haematopoietic stem cells (HSCs) and restricted haematopoietic progenitors. We found that the amount of protein synthesized per hour in HSCs in vivo(More)
Pten deletion from adult mouse hematopoietic cells activates the PI3-kinase pathway, inducing hematopoietic stem cell (HSC) proliferation, HSC depletion, and leukemogenesis. Pten is also mutated in human leukemias, but rarely in early childhood leukemias. We hypothesized that this reflects developmental changes in PI3-kinase pathway regulation. Here we show(More)
Prostate cancer is the most commonly diagnosed noncutaneous cancer in men. Despite this fact, many of the genetic changes that coincide with prostate cancer progression remain enigmatic. We have addressed this problem by characterizing the expression profiles of several benign and malignant human prostate samples, and we have identified several genes that(More)
The homeodomain-containing transcription factor NKX3.1 is a putative prostate tumor suppressor that is expressed in a largely prostate-specific and androgen-regulated manner. Loss of NKX3.1 protein expression is common in human prostate carcinomas and prostatic intraepithelial neoplasia (PIN) lesions and correlates with tumor progression. Disruption of the(More)
Androgen signaling via the androgen receptor (AR) transcription factor is crucial to normal prostate homeostasis and prostate tumorigenesis. Current models of AR function are predominantly based on studies of prostate-specific antigen regulation in androgen-responsive cell lines. To expand on these in vitro paradigms, we used the mouse prostate to elucidate(More)
Tumorigenesis requires sequential accumulation of multiple genetic lesions. In the prostate, tumor initiation is often linked to loss of heterozygosity at the Nkx3.1 locus. In mice, loss of even one Nkx3.1 allele causes prostatic epithelial hyperplasia and eventual prostatic intraepithelial neoplasia (PIN) formation. Here we demonstrate that Nkx3.1 allelic(More)
An important aspect of understanding a biological pathway is to delineate the transcriptional regulatory mechanisms of the genes involved. Two important tasks are often encountered when studying transcription regulation, i.e., (1) the identification of common transcriptional regulators of a set of coexpressed genes; (2) the identification of genes that are(More)