Jeffery S. Harrison

Learn More
While molecular and quantitative trait variation may be theoretically correlated, empirical studies using both approaches frequently reveal discordant patterns, and these discrepancies can contribute to our understanding of evolutionary processes. Here, we assessed genetic variation in six populations of the copepod Tigriopus californicus. Molecular(More)
Deleterious interactions among genes cause reductions in fitness of interpopulation hybrids (hybrid breakdown). Identifying genes involved in hybrid breakdown has proven difficult, and few studies have addressed the molecular basis of this widespread phenomenon. Because proper function of the mitochondrial electron transport system (ETS) requires a(More)
Crosses between populations of Tigriopus californicus result in backcross and F2 hybrid breakdown for a variety of fitness related measures. The magnitude of this hybrid breakdown is correlated with evolutionary divergence. We assessed the chromosomal basis of viability differences in nonrecombinant backcross hybrids using markers mapped to individual(More)
Characterization of a species mating systems is fundamental for understanding the natural history and evolution of that species. Polyandry can result in the multiple paternity of progeny arrays. The only previous study of the loggerhead turtle (Caretta caretta) in the USA showed that within the large peninsular Florida subpopulation, multiple paternity(More)
Crosses between populations of the copepod Tigriopus californicus typically result in outbreeding depression. In this study, replicate hybrid populations were initiated with first generation backcross hybrids between two genetically distinct populations from California: Royal Palms (RP) and San Diego (SD). Reciprocal F(1) were backcrossed to SD, resulting(More)