Jeffery Prince

Learn More
  • Washburn, S Dingledine, +36 authors J J Kriegstein
  • 1998
NATURE | VOL 394 | 13 AUGUST 1998 687 3. Rogan, M. T., Staubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997). 4. Washburn, M. S., Numberger, M., Zhang, S. & Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J.(More)
Dominant optic atrophy (DOA) and axonal peripheral neuropathy (Charcot-Marie-Tooth type 2, or CMT2) are hereditary neurodegenerative disorders most commonly caused by mutations in the canonical mitochondrial fusion genes OPA1 and MFN2, respectively. In yeast, homologs of OPA1 (Mgm1) and MFN2 (Fzo1) work in concert with Ugo1, for which no human equivalent(More)
In this report, we demonstrate that a 50% ethanol extract of the plant-derived product, Chios mastic gum (CMG), contains compounds which inhibit proliferation and induce death of HCT116 human colon cancer cells in vitro. CMG-treatment induces cell arrest at G(1), detachment of the cells from the substrate, activation of pro-caspases-8, -9 and -3, and causes(More)
The marine snail Aplysia californica obtains its defensive ink exclusively from a diet of red seaweed. It stores the pigment (phycoerythrobilin, the red algal photosynthetic pigment, r-phycoerythrin, minus its protein) in muscular ink-release vesicles within the ink gland. Snails fed a diet of green seaweed or romaine lettuce do not secrete ink and their(More)
The fibril-forming collagens (types I-III, V and XI) represent a homogeneous and evolutionary related group of proteins and genes. In addition to serving as supportive elements, these macromolecules influence the spatial and ontogenic diversity of extracellular matrices, for they regulate a number of developmental programs and cellular activities, such as(More)
Dominant optic atrophy (DOA)1,2 and axonal peripheral neuropathy (Charcot-Marie-Tooth Type 2 or CMT2)3 are hereditary neurodegenerative disorders most commonly caused by mutations in the canonical mitochondrial fusion genes OPA1 and MFN2, respectively4. In yeast, homologs of OPA1(Mgm1) and MFN2(Fzo1) work in concert with Ugo15,6, which has no human(More)
  • 1