Learn More
Glutamate transporters are involved in the maintenance of synaptic glutamate concentrations. Because of its potential neurotoxicity, clearance of glutamate from the synaptic cleft may be critical for neuronal survival. Inhibition of glutamate uptake from the synapse has been implicated in several neurodegenerative disorders. In particular, glutamate uptake(More)
Mild cognitive impairment (MCI) is generally referred to the transitional zone between normal cognitive function and early dementia or clinically probable Alzheimer's disease (AD). Oxidative stress plays a significant role in AD and is increased in the superior/middle temporal gyri of MCI subjects. Because AD involves hippocampal-resident memory(More)
Inhibition of proteasome activity is sufficient to induce neuron degeneration and death; however, altered proteasome activity in a neurodegenerative disorder has not been demonstrated. In the present study, we analyzed proteasome activity in short-postmortem-interval autopsied brains from 16 Alzheimer's disease (AD) and nine age- and sex-matched controls. A(More)
Oxidative stress may contribute to the cellular alterations, which occur as the result of aging, and the nervous system is particularly vulnerable to aging associated oxidative injury. The multicatalytic proteasome (MCP) is responsible for the majority of protein degradation and is sensitive to oxidative stress. To determine if MCP activity is altered(More)
Increasing evidence indicates that neurons die by apoptosis, an active form of cell death involving a relatively stereotyped series of biochemical changes that culminate in nuclear fragmentation, in many different developmental and pathophysiological settings. In contrast to most other cell types, neurons have elaborate morphologies with complex neuritic(More)
Alzheimer's disease is a multifactorial, progressive, age-related neurodegenerative disease. In familial Alzheimer's disease, Abeta is excessively produced and deposited because of mutations in the amyloid precursor protein, presenilin-1, and presenilin-2 genes. Here, we generated a double homozygous knock-in mouse model that incorporates the Swedish(More)
Many cases of autosomal dominant early onset Alzheimer's disease (AD) result from mutations in the gene encoding presenilin-1 (PS-1). PS-1 is an integral membrane protein expressed ubiquitously in neurons throughout the brain in which it is located primarily in endoplasmic reticulum (ER). Although the pathogenic mechanism of PS-1 mutations is unknown,(More)
The secreted form of beta-amyloid precursor protein (sAPP alpha) is released from neurons in an activity-dependent manner, and has been reported to modulate neuronal excitability in dissociated hippocampal neurons. We now report that sAPP alpha shifts the frequency dependence for induction of long-term depression of synaptic transmission (LTD) in(More)
Although the proteasome is responsible for the majority of intracellular protein degradation, and has been demonstrated to play a pivotal role in a diverse array of cellular activities, the role of the proteasome in the central nervous system is only beginning to be elucidated. Recent studies have demonstrated that proteasome inhibition occurs in numerous(More)
It is well known that regions of the CNS differentially respond to insults. After brain injury, cyclosporine A reduces damage but is ineffective following spinal cord injury. We address this disparity by assessing several parameters of mitochondrial physiology in the normal neocortex and spinal cord. In situ measurements of O(2) (-.) production, lipid(More)