Learn More
We show here that a brain-computer interface (BCI) using electrocorticographic activity (ECoG) and imagined or overt motor tasks enables humans to control a computer cursor in two dimensions. Over a brief training period of 12-36 min, each of five human subjects acquired substantial control of particular ECoG features recorded from several locations over(More)
Brain-computer interface (BCI) technology can offer individuals with severe motor disabilities greater independence and a higher quality of life. The BCI systems take recorded brain signals and translate them into real-time actions, for improved communication, movement, or perception. Four patient participants with a clinical need for intracranial(More)
The myelin sheath enables saltatory conduction by demarcating the axon into a narrow nodal region for excitation and an extended, insulated internodal region for efficient spread of passive current. This anatomical demarcation produces a dramatic heterogeneity in ionic fluxes during excitation, a classical example being the restriction of Na influx at the(More)
The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such(More)
A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been(More)
The aim of this study was to assess the incidence and severity of dysphagia following anterior cervical spine surgery for cervical spondylosis. One-hundred patients were contacted 12-22 months following cervical spine surgery. Those reporting persistent swallowing impairment were invited to attend for further investigation. Of 73 respondents, 33 (45%)(More)
Neuromonitoring in patients with severe brain trauma and stroke is often limited to intracranial pressure (ICP); advanced neuroscience intensive care units may also monitor brain oxygenation (partial pressure of brain tissue oxygen, P(bt)O(2)), electroencephalogram (EEG), cerebral blood flow (CBF), or neurochemistry. For example, cortical spreading(More)
This article describes a new method of providing feedback during a brain-computer interface movement task using a non-invasive, high-resolution electrotactile vision substitution system. We compared the accuracy and movement times during a center-out cursor movement task, and found that the task performance with tactile feedback was comparable to visual(More)
Functional mapping of eloquent cortex is often necessary prior to invasive brain surgery, but current techniques that derive this mapping have important limitations. In this article, we demonstrate the first comprehensive evaluation of a rapid, robust, and practical mapping system that uses passive recordings of electrocorticographic signals. This mapping(More)
Most current brain-computer interface (BCI) systems for humans use electroencephalographic activity recorded from the scalp, and may be limited in many ways. Electrocorticography (ECoG) is believed to be a minimally-invasive alternative to electroencephalogram (EEG) for BCI systems, yielding superior signal characteristics that could allow rapid user(More)