Learn More
Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells.(More)
The Rat Genome Database (RGD) (http://rgd.mcw.edu) aims to meet the needs of its community by providing genetic and genomic infrastructure while also annotating the strengths of rat research: biochemistry, nutrition, pharmacology and physiology. Here, we report on RGD's development towards creating a phenome database. Recent developments can be categorized(More)
The salamander has the remarkable ability to regenerate its limb after amputation. Cells at the site of amputation form a blastema and then proliferate and differentiate to regrow the limb. To better understand this process, we performed deep RNA sequencing of the blastema over a time course in the axolotl, a species whose genome has not been sequenced.(More)
Well-defined relationships between oligonucleotide properties and hybridization signal intensities (HSI) can aid chip design, data normalization and true biological knowledge discovery. We clarify these relationships using the data from two microarray experiments containing over three million probes from 48 high-density chips. We find that melting(More)
Aptamers are promising affinity reagents that are potentially well suited for high-throughput discovery, as they are chemically synthesized and discovered via completely in vitro selection processes. Recent advancements in selection, sequencing, and the use of modified bases have improved aptamer quality, but the overall process of aptamer generation(More)
BACKGROUND Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally(More)
Many analytical techniques benefit greatly from the use of affinity reagent pairs, wherein each reagent recognizes a discrete binding site on a target. For example, antibody pairs have been widely used to dramatically increase the specificity of enzyme linked immunosorbent assays (ELISA). Nucleic acid-based aptamers offer many advantageous features relative(More)
BACKGROUND DNA aptamers generated by cell-SELEX offer an attractive alternative to antibodies, but generating aptamers to specific, known membrane protein targets has proven challenging, and has severely limited the use of aptamers as affinity reagents for cell identification and purification. METHODOLOGY We modified the BJAB lymphoblastoma cell line to(More)
The broad goal of physiological genomics research is to link genes to their functions using appropriate experimental and computational techniques. Modern genomics experiments enable the generation of vast quantities of data, and interpretation of this data requires the integration of information derived from many diverse sources. Computational biology and(More)
BACKGROUND Identifying the key transcription factors (TFs) controlling a biological process is the first step toward a better understanding of underpinning regulatory mechanisms. However, due to the involvement of a large number of genes and complex interactions in gene regulatory networks, identifying TFs involved in a biological process remains(More)