Learn More
CD45(+):Sca1(+) adult stem cells isolated from uninjured muscle do not display any myogenic potential, whereas those isolated from regenerating muscle give rise to myoblasts expressing the paired-box transcription factor Pax7 and the bHLH factors Myf5 and MyoD. By contrast, CD45(+):Sca1(+) isolated from injured Pax7( -/-) muscle were incapable of forming(More)
MyoD and Myf5 are basic helix-loop-helix transcription factors that play key but redundant roles in specifying myogenic progenitors during embryogenesis. However, there are functional differences between the two transcription factors that impact myoblast proliferation and differentiation. Target gene activation could be one such difference. We have used(More)
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that causes death of motor neurons. ALS patients and mouse models of familial ALS display organismal level metabolic dysfunction, which includes increased energy expenditure despite decreased lean mass. The pathophysiological relevance of abnormal energy homeostasis to motor neuron(More)
The authors would like to retract the article "MyoD-dependent regulation of NF-κB activity couples cell-cycle withdrawal to myogenic differentiation" [1]. After the article was published, the first author revealed that the tubulin blots in Figures 1A, 3E, and 4A are from unrelated samples. The lead author and co-authors apologise to the readers, reviewers(More)
OBJECTIVE The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. Here, we asked if EBF2 regulates beige fat cell biogenesis(More)
Mice lacking MyoD exhibit delayed skeletal muscle regeneration and markedly enhanced numbers of satellite cells. Myoblasts isolated from MyoD -/- myoblasts proliferate more rapidly than wild type myoblasts, display a dramatic delay in differentiation, and continue to incorporate BrdU after serum withdrawal. Primary myoblasts isolated from wild type and MyoD(More)
  • 1