Learn More
As biological agents, viruses come in an astounding range of sizes, with varied shapes and surface morphologies. The structures of viral capsids are generally assemblies of hundreds of copies of one or a few proteins which can be harnessed for use in a wide variety of applications in biotechnology, nanotechnology, and medicine. Despite their complexity,(More)
The encapsulation of enzymes in nanometer-sized compartments has the potential to enhance and control enzymatic activity, both in vivo and in vitro. Despite this potential, there is little quantitative data on the effect of encapsulation in a well-defined compartment under varying conditions. To gain more insight into these effects, we have characterized(More)
The placement of fluorophores in close proximity to metal nanoparticle surfaces is proposed to enhance several photophysical properties of the dyes, potentially leading to improved quantum yields and decreased photobleaching. It is difficult in practice, however, to establish and maintain the nanoscale distances that are required to maximize these effects.(More)
Nature uses protein compartmentalization to great effect for control over enzymatic pathways, and the strategy has great promise for synthetic biology. In particular, encapsulation in nanometer-sized containers to create nanoreactors has the potential to elicit interesting, unexplored effects resulting from deviations from well-understood bulk processes.(More)
Our understanding of translation underpins our capacity to engineer living systems. The canonical start codon (AUG) and a few near-cognates (GUG, UUG) are considered as the 'start codons' for translation initiation in Escherichia coli. Translation is typically not thought to initiate from the 61 remaining codons. Here, we quantified translation initiation(More)
Neurospora produces a mucopolysaccharide (called MP) which inhibits its growth, causes vacuolation and agglutination of its cells, and precipitates its purified membrane protein. Cultures of a colonial strain display a phase of slow growth; the induction of this phase is traced to the production of MP by the mold. Stationary-phase cultures of wild type also(More)
Chemoenzymatic modification of proteins is an attractive option to create highly specific conjugates for therapeutics, diagnostics, or materials under gentle biological conditions. However, these methods often suffer from expensive specialized substrates, bulky fusion tags, low yields, and extra purification steps to achieve the desired conjugate.(More)
Yeast surface display, a well-established technology for protein analysis and engineering, involves expressing a protein of interest as a genetic fusion to either the N- or C-terminus of the yeast Aga2p mating protein. Historically, yeast-displayed protein variants are flanked by peptide epitope tags that enable flow cytometric measurement of construct(More)
Virus-like particles are used to encapsulate drugs, imaging agents, enzymes, and other biologically active molecules in order to enhance their function. However, the size of most virus-like particles is inflexible, precluding the design of appropriately sized containers for different applications. Here, we describe a chromatographic selection for virus-like(More)