Learn More
Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models. The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently(More)
Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision(More)
Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent are effective for tasks involving sequences, visual and otherwise. We describe a class of recurrent convolutional architectures which is end-to-end trainable and suitable for large-scale visual understanding(More)
We evaluate whether features extracted from the activation of a deep convolutional network trained in a fully supervised fashion on a large, fixed set of object recognition tasks can be re-purposed to novel generic tasks. Our generic tasks may differ significantly from the originally trained tasks and there may be insufficient labeled or unlabeled data to(More)
Semantic part localization can facilitate fine-grained catego-rization by explicitly isolating subtle appearance differences associated with specific object parts. Methods for pose-normalized representations have been proposed, but generally presume bounding box annotations at test time due to the difficulty of object detection. We propose a model for(More)
We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders - a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order to succeed at this task, context encoders need to both(More)
Solving the visual symbol grounding problem has long been a goal of artificial intelligence. The field appears to be advancing closer to this goal with recent breakthroughs in deep learning for natural language grounding in static images. In this paper, we propose to translate videos directly to sentences using a unified deep neural network with both(More)
Real-world videos often have complex dynamics, methods for generating open-domain video descriptions should be sensitive to temporal structure and allow both input (sequence of frames) and output (sequence of words) of variable length. To approach this problem we propose a novel end-to-end sequence-to-sequence model to generate captions for videos. For this(More)
We present an algorithm that learns representations which explicitly compensate for domain mismatch and which can be efficiently realized as linear classifiers. Specifically, we form a linear transformation that maps features from the target (test) domain to the source (training) domain as part of training the classifier. We optimize both the transformation(More)