Jeff Crandall

Learn More
The purpose of this study was to measure the ankle joint contact area under physiological load magnitudes using a stereophotography technique that allows accurate analysis of the entire joint surface without disrupting the joint during loading. Ten cadaveric foot and ankle specimens were loaded to 1000 N in neutral, and 20 degrees dorsiflexion, supination,(More)
The accuracy of the surface extraction of magnetic resonance images of highly congruent joints with thin articular cartilage layers has a significant effect on the percentage errors and reproducibility of quantitative measurements (e.g., thickness and volume) of the articular cartilage. Traditional techniques such as gradient-based edge detection are not(More)
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage(More)
This study evaluated the biofidelity of the WorldSID and the ES-2re under whole-body side impact conditions with and without a side airbag using the biomechanical cadaveric response data generated from 4.3m/s whole-body side impact tests. Impact forces, spinal kinematics, and chest deflections were considered in the biofidelity evaluation. Average responses(More)
Planar impacts with objects and other vehicles may increase the risk and severity of injury in rollover crashes. The current study compares the frequency of injury measures (MAIS 2+, 3+, and 4+; fatal; AIS 2+ head and cervical spine; and AIS 3+ head and thorax) as well as vehicle type distribution (passenger car, SUV, van, and light truck), crash(More)
Improvements to vehicle frontal crashworthiness have led to reductions in toe pan and instrument panel intrusions as well as leg, foot, and ankle loadings in standardized crash tests. Current field data, however, suggests the proportion of foot and ankle injuries sustained by drivers in frontal crashes has not decreased over the past two decades. To explain(More)
The objective of the current study was to characterize the whole-body kinematic response of restrained PMHS in controlled laboratory rollover tests. A dynamic rollover test system (DRoTS) and a parametric vehicle buck were used to conduct 36 rollover tests on four adult male PMHS with varied test conditions to study occupant kinematics during the rollover(More)
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat(More)
This study presents the results of indentation tests on the superior vertebral endplate of the 4th lumbar vertebra (L4) of eleven male cadaveric subjects (65 +/- 7 years). Three locations on the superior endplate surface were loaded with a 7.9 mm spherical indentor at either a low (1 mm/s) or high (1000 mm/s) rate. Anterior midline and posterior right and(More)
  • 1