Jeff A. Porter

Learn More
Hedgehog (Hh) proteins comprise a family of secreted signaling molecules essential for patterning a variety of structures in animal embryogenesis. During biosynthesis, Hh undergoes an autocleavage reaction, mediated by its carboxyl-terminal domain, that produces a lipid-modified amino-terminal fragment responsible for all known Hh signaling activity. Here(More)
Extracellular signaling proteins encoded by the hedgehog (hh) multigene family are responsible for the patterning of a variety of embryonic structures in vertebrates and invertebrates. The Drosophila hh gene has now been shown to generate two predominant protein species that are derived by an internal autoproteolytic cleavage of a larger precursor.(More)
Veratrum alkaloids and distal inhibitors of cholesterol biosynthesis have been studied for more than 30 years as potent teratogens capable of inducing cyclopia and other birth defects. Here, it is shown that these compounds specifically block the Sonic hedgehog (Shh) signaling pathway. These teratogens did not prevent the sterol modification of Shh during(More)
The ninaC gene encodes two retinal specific proteins (p132 and p174) consisting of a protein kinase domain joined to a domain homologous to the head region of the myosin heavy chain. The putative myosin domain of p174 is linked at the COOH-terminus to a tail which has some similarities to myosin-I tails. In the current report, we demonstrate that the ninaC(More)
From both a fundamental and a clinical point of view, it is necessary to know the distribution of the eye's aberrations in the normal population and to be able to describe them as efficiently as possible. We used a modified Hartmann-Shack wave-front sensor to measure the monochromatic wave aberration of both eyes for 109 normal human subjects across a(More)
The Drosophila ninaC locus encodes a rhabdomere specific protein (p174) with linked protein kinase and myosin domains, required for a wild-type ERG and to prevent retinal degeneration. To investigate the role for linked kinase and myosin domains, we analyzed mutants generated by site-directed mutagenesis. Mutation of the kinase domain resulted in an ERG(More)
Calmodulin is a highly conserved regulatory protein found in all eukaryotic organisms which mediates a variety of calcium ion-dependent signalling pathways. In the Drosophila retina, calmodulin was concentrated in the photoreceptor cell microvillar structure, the rhabdomere, and was found in lower amounts in the sub-rhabdomeral cytoplasm. This calmodulin(More)
The amino-terminal signaling domain of the Sonic hedgehog secreted protein (Shh-N), which derives from the Shh precursor through an autoprocessing reaction mediated by the carboxyl-terminal domain, executes multiple functions in embryonic tissue patterning, including induction of ventral and suppression of dorsal cell types in the developing neural tube. An(More)
The stability and membrane localization of the transforming growth factor-β (TGF-β) type I receptor (TβRI) determines the levels of TGF-β signalling. TβRI is targeted for ubiquitylation-mediated degradation by the SMAD7–SMURF2 complex. Here we performed a genome-wide gain-of-function screen and identified ubiquitin-specific protease (USP) 4 as a strong(More)
Within the past few years, members of the hedgehog (hh) family of secreted signalling proteins have emerged as the primary signals generated by certain embryonic patterning centres. In vertebrate embryos, for example, sonic hedgehog expression in the notochord appears to be responsible for the local and long-range induction of ventral cell types within the(More)