Jeevan Nagendran

Learn More
OBJECTIVES Cryopreserved valve allografts used in congenital cardiac surgery are associated with a significant cellular and humoral immune response. This might be reduced by removal of antigenic cellular elements (decellularization). The aim of this study was to determine the immunologic effect of decellularization in a rat allograft valve model. METHODS(More)
All mammalian cells rely on adenosine triphosphate (ATP) to maintain function and for survival. The heart has the highest basal ATP demand of any organ due to the necessity for continuous contraction. As such, the ability of the cardiomyocyte to monitor cellular energy status and adapt the supply of substrates to match the energy demand is crucial. One(More)
AIMS Impaired energy metabolism has been implicated in the pathogenesis of heart failure. Hyperpolarized (13)C magnetic resonance (MR), in which (13)C-labelled metabolites are followed using MR imaging (MRI) or spectroscopy (MRS), has enabled non-invasive assessment of pyruvate metabolism. We investigated the hypothesis that if we serially examined a model(More)
The mechanisms responsible for how resveratrol inhibits pathological left ventricular hypertrophy (LVH) but not physiological LVH have not been elucidated. Herein, we show that in rat cardiomyocytes, lower concentrations of resveratrol (0.1 and 1 μM) are efficient at selectively inhibiting important regulators involved in pathological LVH (such as nuclear(More)
Although diabetic cardiomyopathy is associated with enhanced intramyocardial triacylglycerol (TAG) levels, the role of TAG catabolizing enzymes in this process is unclear. Because the TAG hydrolase, adipose triglyceride lipase (ATGL), regulates baseline cardiac metabolism and function, we examined whether alterations in cardiomyocyte ATGL impact cardiac(More)
BACKGROUND In neonates, the increase in O(2)-delivery (DO(2)) by dopamine is offset by a greater increase in O(2)-consumption (VO(2)). This has been attributed to β(3)-adrenergic receptors in neonatal brown fat tissue. β(3) receptors in the heart have negative inotropic properties. We evaluated the effects of SR59230A, a β(3)-antagonist, on the balance of(More)
  • 1