Learn More
Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding(More)
Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely(More)
Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations(More)
South Asian emissions of fossil fuel SO(2) and black carbon increased approximately 6-fold since 1930, resulting in large atmospheric concentrations of black carbon and other aerosols. This period also witnessed strong negative trends of surface solar radiation, surface evaporation, and summer monsoon rainfall. These changes over India were accompanied by(More)
[1] In this study, we present the results of nitrogen deposition on land from a set of 29 simulations from six different tropospheric chemistry models pertaining to present-day and 2100 conditions. Nitrogen deposition refers here to the deposition (wet and dry) of all nitrogen-containing gas phase chemical species resulting from NO x (NO + NO 2) emissions.(More)
Equilibrium climate sensitivity of the Community Climate System Model, version 4 (CCSM4) is 3.208C for 18 horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 18 resolution is 1.728C, which is about 0.28C higher than in CCSM3. These higher(More)
Understanding the cause of differences among general circulation model projections of carbon dioxide-induced climatic change is a necessary step toward improving the models. An intercomparison of 14 atmospheric general circulation models, for which sea surface temperature perturbations were used as a surrogate climate change, showed that there was a roughly(More)
[1] In this study, we analyze the response of the coupled chemistry-climate system to changes in aerosol emissions in fully coupled atmospheric chemistry-climate-slab ocean model simulations; only the direct radiative effect of aerosols and their uptake of chemical species are considered in this study. We show that, at the global scale, a decrease in(More)
Global warming caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest(More)