Jed P. Sparks

Learn More
 Leaf carbon isotope discrimination (Δ), seasonal estimates of the leaf-to-air water vapor gradient on a molar basis (ω), and leaf nitrogen contents were examined in three riparian tree species (Populus fremontii, P. angustifolia, and Salix exigua) along elevational transects in northern and southern Utah USA (1500–2670 m and 600–1820 m elevational(More)
We evaluated the hypothesis that CO2 uptake by a subalpine, coniferous forest is limited by cool temperature during the growing season. Using the eddy covariance approach we conducted observations of net ecosystem CO2 exchange (NEE) across two growing seasons. When pooled for the entire growing season during both years, light-saturated net ecosystem CO2(More)
The transition between wintertime net carbon loss and springtime net carbon assimilation has an important role in controlling the annual rate of carbon uptake in coniferous forest ecosystems. We studied the contributions of springtime carbon assimilation to the total annual rate of carbon uptake and the processes involved in the winter-to-spring transition(More)
The leaf surface is the contact point between plants and the environment and plays a crucial role in mediating biotic and abiotic interactions. Here, we took a phylogenetic approach to investigate the function, trade-offs, and evolution of leaf surface traits in the milkweeds (Asclepias). Across 47 species, we found trichome densities of up to 3000(More)
The eddy covariance technique, which is used in the determination of net ecosystem CO2 exchange (NEE), is subject to significant errors when advection that carries CO2 in the mean flow is ignored. We measured horizontal and vertical advective CO2 fluxes at the Niwot Ridge AmeriFlux site (Colorado, USA) using a measurement approach consisting of multiple(More)
Tropical forest soils are known to emit large amounts of reactive nitrogen oxide compounds, often referred to collectively as NOy (NOy = NO + NO2 + HNO3 + organic nitrates). Plants are known to assimilate and emit NOy and it is therefore likely that plant canopies affect the atmospheric concentration of reactive nitrogen compounds by assimilating or(More)
Stem water content, ice fraction, and losses in xylem conductivity were monitored from November 1996 to October 1997 in an even-aged stand of Pinus contorta (lodgepole pine) near Potlatch, Idaho, USA. A time domain reflectometry (TDR) probe was used to continuously monitor stem water contents and ice fractions. Stem sapwood water contents measured with TDR(More)
The identification and quantification of methane emissions from natural gas production has become increasingly important owing to the increase in the natural gas component of the energy sector. An instrumented aircraft platform was used to identify large sources of methane and quantify emission rates in southwestern PA in June 2012. A large regional flux,(More)
Precipitation patterns including the magnitude, timing, and seasonality of rainfall are predicted to undergo substantial alterations in arid regions in the future, and desert organisms may be more responsive to such changes than to shifts in only mean annual rainfall. Soil biocrust communities (consisting of cyanobacteria, lichen, and mosses) are ubiquitous(More)