Learn More
The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for(More)
This paper is about helical cone-beam reconstruction using the exact filtered backprojection formula recently suggested by Katsevich (2002a Phys. Med. Biol. 47 2583-97). We investigate how to efficiently and accurately implement Katsevich's formula for direct reconstruction from helical cone-beam data measured in two native geometries. The first geometry is(More)
This paper describes a flexible new methodology for accurate cone beam reconstruction with source positions on a curve (or set of curves). The inversion formulas employed by this methodology are based on first backprojecting a simple derivative in the projection space and then applying a Hilbert transform inversion in the image space. The local nature of(More)
This paper investigates cone-beam tomography for a wide class of x-ray source trajectories called saddles. In particular, a mathematical analysis of the number of intersections between a saddle and an arbitrary plane is given. This analysis demonstrates that axially truncated cone-beam projections acquired along a saddle can be used for exact reconstruction(More)
The spatial resolution of diagnostic Computed Tomography (CT) has increased substantially, and 3D isotropic sub-millimeter spatial resolution in both axial and helical scan modes is routinely available in the clinic. However, driven by advanced clinical applications, the pursuit for higher spatial resolution and free of aliasing artifacts in diagnostic CT(More)
It is well known that CT projections are redundant. Over the past decades, significant efforts have been devoted to characterize the data redundancy in different aspects. Very recently, Clackdoyle and Desbat reported a new integral-type data consistency condition (DCC) for truncated 2D parallel-beam projections, which can be applied to a region inside a(More)
PURPOSE X-ray computed tomography angiography (CTA) is the modality of choice to noninvasively monitor and diagnose heart disease with coronary artery health and stenosis detection being of particular interest. Reliable, clinically relevant coronary artery imaging mandates high spatiotemporal resolution. However, advances in intrinsic scanner spatial(More)
  • 1