Jeannette Yen

Learn More
Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms' performance and improving the design of vehicles moving through air(More)
A team of biologists, engineers, and cognitive scientists has been working together for the past five years, teaching an upper level undergraduate course in biologically inspired design where half the class of forty students are biologists and other physical scientists and the other half are engineers (mechanical, materials, industrial, others). From this(More)
Biologically inspired design uses biological systems as analogues to develop solutions for design problems. We conducted a cognitive study of biologically inspired design in the context of an interdisciplinary introductory course on biologically inspired design in Fall of 2006. The goal of this study was to understand the processes of biologically inspired(More)
We quantified the flow field generated by tethered and free-swimming Euchaeta antarctica using the particle image velocimetry (PIV) technique. The streamlines around the free-swimming specimens were generally parallel to the body axis, whereas the streamlines around all of the tethered copepodids demonstrated increased curvature. Differences noted in the(More)
Sustainable design is as an important movement in design. Biologically inspired design is a major paradigm for sustainable design. In this paper, we analyze a corpus of biologically inspired design projects in terms of sustainability. We then describe a case study of analogical design of a fog harvesting net, and abstract from it the patterns of Hydrophobia(More)
Several species and developmental stages of calanoid copepods were tested for responses to environmental cues in a laboratory apparatus that mimicked conditions commonly associated with patches of food in the ocean. All species responded to the presence of phytoplankton by feeding. All species responded by increasing proportional residence time in one, but(More)
Limacina helicina (1-3 mm) lives in the environment that straddles both inertial and viscous regimes. In this intermediate Reynolds range (10(0)-10(3)), an oscillating appendage may use either drag-based or lift-based locomotion. The swimming motion of L. helicina was investigated to determine its mechanics and whether features of rowing or flying gaits(More)
Krill are aquatic crustaceans that engage in long distance migrations, either vertically in the water column or horizontally for 10 km (over 200,000 body lengths) per day. Hence efficient locomotory performance is crucial for their survival. We study the swimming kinematics of krill using a combination of experiment and analysis. We quantify the propulsor(More)