Learn More
Apomixis, the asexual production of seed, is a trait estimated to occur in fewer than 1% of flowering plant species, with an uneven distribution among lineages. In the past decade, targeted research efforts have aimed at clarifying the genetic basis of apomixis, with the goal of engineering or breeding apomictic crops. Recent work suggests a simple genetic(More)
Lasthenia californica sensu Ornduff consists of two races that differ in their flavonoid pigments and edaphic tolerances. Recent phylogenetic studies of Lasthenia have revealed that members of L. californica sensu Ornduff belong to two phylogenetic species. The relationship of the edaphic races to these new species and to each other is the focus of this(More)
Geographic patterns of parthenogenesis and the number of transitions from sexual diploidy to asexual (apomictic) autopolyploidy were examined for 40 populations of the Easter daisy, Townsendia hookeri. Analyses of pollen diameter and stainability characterized 15 sexual diploid and 25 apomictic polyploid populations from throughout the plant's western North(More)
The study of sympatric populations of closely related plant species often reveals evidence of hybridization. Mechanisms that reduce outcrossing (e.g., selfing, apomixis) may allow co-occurrence without gene flow. In this study, we describe patterns of genetic variation in two contact zones, each comprising three closely related morphological types, that key(More)
Whether the potential costs associated with broad-scale use of genetically modified organisms (GMOs) outweigh possible benefits is highly contentious, including within the scientific community. Even among those generally in favour of commercialization of GM crops, there is nonetheless broad recognition that transgene escape into the wild should be(More)
PREMISE OF THE STUDY Babcock and Stebbins coined the term agamic complex in their 1938 monograph of the North American Crepis agamic complex. Despite the historical role that this complex holds in the evolutionary literature, it has not been reexamined in over 75 years. We present a thorough reevaluation of the complex to test hypotheses proposed by Babcock(More)
Negative reproductive interactions are likely to be strongest between close relatives and may be important in limiting local coexistence. In plants, interspecific pollen flow is common between co-occurring close relatives and may serve as the key mechanism of reproductive interference. Agamic complexes, systems in which some populations reproduce through(More)
  • 1