Learn More
Visual processing deficits are an integral component of schizophrenia and are sensitive predictors of schizophrenic decompensation in healthy adults. The primate visual system consists of discrete subcortical magnocellular and parvocellular pathways, which project preferentially to dorsal and ventral cortical streams. Subcortical systems show differential(More)
BACKGROUND Attention and executive functions show strong associations with slow gait and falls in seniors and have been shown to be amenable to cognitive remediation. However, cognitive remediation as a strategy to improve mobility has not been investigated. METHODS Using a randomized single-blind control design, 24 sedentary older adults (exercise less(More)
BACKGROUND Evidence suggests that gait is influenced by higher order cognitive and cortical control mechanisms. However, less is known about the functional correlates of cortical control of gait. METHODS Using functional near-infrared spectroscopy, the current study was designed to evaluate whether increased activations in the prefrontal cortex (PFC) were(More)
Visual object-recognition is thought to involve activation of a distributed network of cortical regions, nodes of which include the lateral prefrontal cortex, the so-called lateral occipital complex (LOC), and the hippocampal formation. It has been proposed that long-range oscillatory synchronization is a major mode of coordinating such a distributed(More)
BACKGROUND The relationship between mobility and cognition in aging is well established, but the relationship between mobility and the structure and function of the aging brain is relatively unknown. This, in part, is attributed to the technological limitations of most neuroimaging procedures, which require the individual to be immobile or in a supine(More)
Research detailing multisensory integration (MSI) processes in aging and their association with clinically relevant outcomes is virtually non-existent. To our knowledge, the relationship between MSI and balance has not been well-established in aging. Given known alterations in unisensory processing with increasing age, the aims of the current study were to(More)
We examined the effect of cognitive fatigue on the Attention Networks Test (ANT). Participants were 228 non-demented older adults. Cognitive fatigue was operationally defined as decline in alerting, orienting, and executive attention performance over the course of the ANT. Anchored in a theoretical model implicating the frontal basal ganglia circuitry as(More)
Knowledge of online functional brain mechanisms of locomotion is scarce due to technical limitations of traditional neuroimaging methods. Using functional Near Infrared Spectroscopy (fNIRS) we evaluated task-related changes in oxygenated hemoglobin levels (HbO2) in real-time over the pre-frontal-cortex (PFC) regions during simple (Normal Walk; NW) and(More)
The posture first hypothesis suggests that under dual-task walking conditions older adults prioritize gait over cognitive task performance. Functional neural confirmation of this hypothesis, however, is lacking. Herein, we determined the functional neural correlates of the posture first hypothesis and hypothesized that the presence of neurological gait(More)
Studies examining multisensory integration (MSI) in aging consistently demonstrate greater reaction time (RT) facilitation in old compared to young adults, but often fail to determine the utility of MSI. The aim of the current experiment was to further elucidate the utility of MSI in aging by determining its relationship to physical activity level. 147(More)