Jeanie A. Scott

Learn More
The levels of nerve growth factor (NGF) and its mRNA in the rat central nervous system were determined by two-site enzyme immunoassay and quantitative Northern blots, respectively. Relatively high NGF levels (0.4-1.4 ng NGF/g wet weight) were found both in the regions innervated by the magnocellular cholinergic neurons of the basal forebrain (hippocampus,(More)
Classical cadherin adhesion molecules are fundamental determinants of cell-cell recognition that function in cooperation with the actin cytoskeleton. Productive cadherin-based cell recognition is characterized by a distinct morphological process of contact zone extension, where limited initial points of adhesion are progressively expanded into broad zones(More)
Functional interactions between classical cadherins and the actin cytoskeleton involve diverse actin activities, including filament nucleation, cross-linking, and bundling. In this report, we explored the capacity of Ena/VASP proteins to regulate the actin cytoskeleton at cadherin-adhesive contacts. We extended the observation that(More)
Selenium supplementation has been shown for many years to work as an anticarcinogenic agent both in epidemiology and in in vitro studies. Selenium supplementation has recently been shown to decrease total cancer incidence. However, the mechanism of action of selenium as an anticarcinogenic agent has yet to be elucidated. Selenomethionine was the predominant(More)
Although mouse oocytes and cleavage-stage embryos are unable to utilize glucose as a metabolic fuel, they have a specific requirement for a short exposure to glucose prior to compaction. The reason for this requirement has been unclear. In this study we confirm that cleavage-stage exposure to glucose is required for blastocyst formation and show that the(More)
The efficacy of dietary selenium supplementation is currently being evaluated in intervention trials. However, the biological mechanisms underlying the cancer chemopreventive effects of selenium supplementation have yet to be elucidated. Selenium metabolism and polyamine biosynthesis are linked in their common requirement for S-adenosylmethionine.(More)
The Na+/Ca2+ exchanger plays a prominent role in regulating intracellular Ca2+ levels in cardiac myocytes and can serve as both a Ca2+ influx and efflux pathway. A novel inhibitor, KB-R7943, has been reported to selectively inhibit the reverse mode (i.e., Ca2+ entry) of Na+/Ca2+ exchange transport, although many aspects of its inhibitory properties remain(More)
The atypical protein kinase C (aPKC) is a key regulator of polarity and cell fate in lower organisms. However, whether mammalian aPKCs control stem cells and fate in vivo is not known. Here we show that loss of aPKCλ in a self-renewing epithelium, the epidermis, disturbed tissue homeostasis, differentiation, and stem cell dynamics, causing progressive(More)
We have developed a sensitive assay for the quantification of nerve growth factor mRNA (mRNANGF) in various tissues of the mouse using in vitro transcribed RNANGF. Probes of both polarities were used to determine the specificity of the hybridization signals obtained. Comparison of NGF levels with its mRNA revealed that both were correlated with the density(More)
The inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ compartment of endocrine cells was studied with alpha-toxin- and digitonin-permeabilized rat insulinoma (RINA2) and rat pheochromocytoma (PC12) cells. The Ca2+ uptake was ATP-dependent, and submicromolar concentrations of IP3 specifically released the stored Ca2+. Half-maximal Ca2+ release was observed(More)