Learn More
The plasticity of skeletal muscle allows the body to adapt to various physiological demands such as growth, exercise and tissue regeneration and repair. The secreted factors from muscle exert their action via auto-, para-, and endocrine mechanisms, thereby influencing the maintenance of total body homeostasis. In addition, the regulation of muscle(More)
To elucidate cellular events underlying the pluripotency of human embryonic stem cells (hESCs), we performed parallel quantitative proteomic and phosphoproteomic analyses of hESCs during differentiation initiated by a diacylglycerol analog or transfer to media that had not been conditioned by feeder cells. We profiled 6521 proteins and 23,522(More)
Peroxisome proliferator-activated receptors (PPARs) are pleiotropic regulators of growth and differentiation of many cell types. We have performed a comprehensive analysis of the expression of PPARs, transcriptional cofactors, and marker genes during differentiation of normal human keratinocytes using a combination of reverse transcriptase polymerase chain(More)
During recent years, increased efforts have focused on elucidating the secretory function of skeletal muscle. Through secreted molecules, skeletal muscle affects local muscle biology in an auto/paracrine manner as well as having systemic effects on other tissues. Here we used a quantitative proteomics platform to investigate the factors secreted during the(More)
BACKGROUND Alterations in specific signal transduction pathways may explain the hyperproliferation and abnormal differentiation of the keratinocytes as well as the increased expression of inflammatory cytokines seen in psoriasis. Major signalling pathways used by eukaryotic cells to transduce extracellular signals into cellular responses impinge on the(More)
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research mainly because of the complex nature of hESC culture(More)
Abnormal epidermal proliferation and differentiation characterize the inflammatory skin disease psoriasis. Here we demonstrate that expression of PPARdelta mRNA and protein is markedly upregulated in psoriatic lesions and that lipoxygenase products accumulating in psoriatic lesions are potent activators of PPARdelta. The expression levels of NF-kappaB p50(More)
Nuclear factor-kappaB (NF-kappaB) is an inducible nuclear transcription factor regulating a range of cellular processes. An imbalance of the DNA binding activity of NF-kappaB may, therefore, be part of the pathophysiological mechanisms in psoriasis. The purpose of this study was to determine the NF-kappaB DNA binding activity in psoriatic skin using three(More)
1alpha,25-Dihydroxyvitamin D3 added to human keratinocytes increases differentiation through an activation of the transcription factor activator protein 1. We have previously reported that the 1alpha,25-dihydroxyvitamin D3-induced increase of activator protein 1 DNA binding activity is mediated by a protein kinase C-independent mechanism. The purpose of(More)
Muscle stem cells, or satellite cells, play an important role in the maintenance and repair of muscle tissue and have the capacity to proliferate and differentiate in response to physiological or environmental changes. Although they have been extensively studied, the key regulatory steps and the complex temporal protein dynamics accompanying the(More)