Jean-Yves Tourneret

Learn More
Nonlinear models have recently shown interesting properties for spectral unmixing. This paper studies a generalized bilinear model and a hierarchical Bayesian algorithm for unmixing hyperspectral images. The proposed model is a generalization not only of the accepted linear mixing model but also of a bilinear model that has been recently introduced in the(More)
This paper presents a variational-based approach for fusing hyperspectral and multispectral images. The fusion problem is formulated as an inverse problem whose solution is the target image assumed to live in a lower dimensional subspace. A sparse regularization term is carefully designed, relying on a decomposition of the scene on a set of dictionaries.(More)
This paper studies a fully Bayesian algorithm for endmember extraction and abundance estimation for hyperspectral imagery. Each pixel of the hyperspectral image is decomposed as a linear combination of pure endmember spectra following the linear mixing model. The estimation of the unknown endmember spectra is conducted in a unified manner by generating the(More)
This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial functions leading to a polynomial postnonlinear mixing model. A(More)
Pansharpening aims at fusing a panchromatic image with a multispectral one, to generate an image with the high spatial resolution of the former and the high spectral resolution of the latter. In the last decade, many algorithms have been presented in the literatures for pansharpening using multispectral data. With the increasing availability of(More)
This paper studies a new Bayesian unmixing algorithm for hyperspectral images. Each pixel of the image is modeled as a linear combination of so-called endmembers. These endmembers are supposed to be random in order to model uncertainties regarding their knowledge. More precisely, we model endmembers as Gaussian vectors whose means have been determined using(More)
This paper evaluates the potential interest of using bivariate gamma distributions for image registration and change detection. The first part of this paper studies estimators for the parameters of bivariate gamma distributions based on the maximum likelihood principle and the method of moments. The performance of both methods are compared in terms of(More)
This paper proposes a hierarchical Bayesian model that can be used for semi-supervised hyperspectral image unmixing. The model assumes that the pixel reflectances result from linear combinations of pure component spectra contaminated by an additive Gaussian noise. The abundance parameters appearing in this model satisfy positivity and additivity(More)
We propose a joint segmentation algorithm for piecewise constant autoregressive (AR) processes recorded by several independent sensors. The algorithm is based on a hierarchical Bayesian model. Appropriate priors allow us to introduce correlations between the change locations of the observed signals. Numerical problems inherent to Bayesian inference are(More)