Learn More
The majority of camera calibration methods, including the gold standard algorithm, use point-based information and simultaneously estimate all calibration parameters. In contrast, we propose a novel calibration method that exploits line orientation information and decouples the problem into two simpler stages. We formulate the problem as minimization of the(More)
We present a method for reconstructing the geometry and appearance of indoor scenes containing dynamic human subjects using a single (optionally moving) RGBD sensor. We introduce a framework for building a representation of the articulated scene geometry as a set of piecewise rigid parts which are tracked and accumulated over time using moving voxel grids(More)
This paper addresses the problem of objectively quantifying accuracy in free-viewpoint video production. Free-viewpoint video makes use of geometric scene reconstruction and renders novel views using the appearance sampled in multiple camera images. Previous work typically adopts an objective evaluation of geometric accuracy against ground truth data or a(More)
Current state-of-the-art image-based scene reconstruction techniques are capable of generating high-fidelity 3D models when used under controlled capture conditions. However, they are often inadequate when used in more challenging outdoor environments with moving cameras. In this case, algorithms must be able to cope with relatively large calibration and(More)
Current state-of-the-art image-based scene reconstruction techniques are capable of generating high-fidelity 3D models when used under controlled capture conditions. However, they are often inadequate when used in more challenging environments such as sports scenes with moving cameras. Algorithms must be able to cope with relatively large calibration and(More)
A 4D parametric motion graph representation is presented for interactive animation from actor performance capture in a multiple camera studio. The representation is based on a 4D model database of temporally aligned mesh sequence reconstructions for multiple motions. High-level movement controls such as speed and direction are achieved by blending multiple(More)
In this paper we present a novel approach to estimate the alpha mattes of a foreground object captured by a wide-baseline circular camera rig provided a single key frame trimap. Bayesian inference coupled with camera calibration information are used to propagate high confidence trimaps labels across the views. Recent techniques have been developed to(More)
Natural image matting is an extremely challenging image processing problem due to its ill-posed nature. It often requires skilled user interaction to aid definition of foreground and background regions. Current algorithms use these predefined regions to build local foreground and background colour models. In this paper we propose a novel approach which uses(More)
Conventional approaches to 3D scene reconstruction often treat matting and reconstruction as two separate problems, with matting a prerequisite to reconstruction. The problem with such an approach is that it requires taking irreversible decisions at the first stage, which may translate into reconstruction errors at the second stage. In this paper, we(More)