Learn More
In order to shed light on transcriptional networks involved in adult peripheral nerve repair program, we propose for the first time an organization of the transcriptional dynamics of the mouse dorsal root ganglia (DRG) following a sciatic nerve lesion. This was done by a non-hierarchical bioinformatical clustering of four Serial Analysis of Gene Expression(More)
Voltage-activated sodium currents (INa) in vestibular ganglion neurones acutely isolated from postnatal mice were investigated using the whole-cell configuration of the patch-clamp technique. Under recording conditions designed to allow the complete isolation of INa depolarizations from a holding potential of -80 mV revealed a fast inactivating inward(More)
We investigated the development of a low (T-type) and two high voltage-activated (N- and L-type) calcium channel currents in large diameter dorsal root ganglion neurones acutely isolated from embryonic mice using the whole-cell patch-clamp technique. The low and high voltage-activated barium currents (LVA and HVA) were identified by their distinct threshold(More)
Different subsets of dorsal root ganglion (DRG) mechanoreceptors transduce low- and high-intensity mechanical stimuli. It was shown recently that, in vivo, neurotrophin-4 (NT-4)-dependent D-hair mechanoreceptors specifically express a voltage-activated T-type calcium channel (Ca(v)3.2) that may be required for their mechanoreceptive function. Here we show(More)
The presence of a hyperpolarization-activated inward current (Ih) was investigated in mouse vestibular primary neurons using the whole-cell patch-clamp technique. In current-clamp configuration, injection of hyperpolarizing currents induced variations of membrane voltage with prominent time-dependent rectification increasing with current amplitudes. This(More)
The effects of 2,5-di(tert-butyl)-1,4-benzohydroquinone (tBHQ), a synthetic phenolic antioxidant and a blocker of the sarco-endoplasmic ATPase, were evaluated on low and high voltage-activated Ca(2+) currents (ICas) with rodent dorsal root ganglion, hippocampal, and motor neurons. In all cell types tested, tBHQ (IC(50) = 35 microM) blocked ICa at(More)
In addition to its inhibitory action, reports have shown that, in sensory neurons, GABA can be responsible for excitatory effects leading to painful behavior. The cellular mechanisms for these excitatory effects remain largely unknown. Although the high intracellular chloride concentration allows GABA(A) receptor activation to depolarize all adult sensory(More)
Neurotrophin-3 (NT-3), its cognate receptor trkC, and voltage-gated calcium channels are coexpressed by embryonic pyramidal neurons before target contact, but their functions at this stage of development are still unclear. We show here that, in vitro, anti-NT-3 and anti-trkC antibodies blocked the increase, and NT-3 reversed the decrease in the number of(More)
Ca2+ influx through voltage-gated calcium channels probably influences neuronal ontogenesis. Many developing neurones transiently express T-type/Cav3 calcium channels that contribute to their electrical activity and potentially to their morphological differentiation. Here we have characterized the electrophysiological properties and the functional role of a(More)
Voltage-gated Ca2+ currents were investigated in a subpopulation of dorsal root ganglion neurons (large diameter, neurofilament-positive) acutely isolated from 13-day-old mouse embryos and recorded using the whole-cell patch-clamp technique. Low- and high-voltage-activated calcium currents were recorded. These currents could be identified and separated by(More)