Learn More
The effects of dihydropyridines (DHPs) normally considered to be specific for L-type calcium channels were studied on the T-type Ca channel current of acutely isolated dorsal root ganglion (DRG) neurons taken from 13-day-old (E13) mouse embryos. Potent but reversible inhibitory effects of the DHP nicardipine were found in the micromolar range. For example,(More)
Different subsets of dorsal root ganglion (DRG) mechanoreceptors transduce low- and high-intensity mechanical stimuli. It was shown recently that, in vivo, neurotrophin-4 (NT-4)-dependent D-hair mechanoreceptors specifically express a voltage-activated T-type calcium channel (Ca(v)3.2) that may be required for their mechanoreceptive function. Here we show(More)
In order to shed light on transcriptional networks involved in adult peripheral nerve repair program, we propose for the first time an organization of the transcriptional dynamics of the mouse dorsal root ganglia (DRG) following a sciatic nerve lesion. This was done by a non-hierarchical bioinformatical clustering of four Serial Analysis of Gene Expression(More)
We compared the effects of representative members of three major classes of cardiac L-type channel antagonists, i.e. dihydropyridines (DHPs), phenylalkylamines (PAAs) and benzothiazepines (BTZs) on high-voltage-activated (HVA) Ca2+ channel currents recorded from a holding potential of −100 mV in rat ventricular cells, mouse sensory neurons and rat(More)
The effects of 2,5-di(tert-butyl)-1,4-benzohydroquinone (tBHQ), a synthetic phenolic antioxidant and a blocker of the sarco-endoplasmic ATPase, were evaluated on low and high voltage-activated Ca(2+) currents (ICas) with rodent dorsal root ganglion, hippocampal, and motor neurons. In all cell types tested, tBHQ (IC(50) = 35 microM) blocked ICa at(More)
Voltage-activated sodium currents (INa) in vestibular ganglion neurones acutely isolated from postnatal mice were investigated using the whole-cell configuration of the patch-clamp technique. Under recording conditions designed to allow the complete isolation of INa depolarizations from a holding potential of -80 mV revealed a fast inactivating inward(More)
Neural stem cells cultured with fibroblast growth factor 2 (FGF2)/epidermal growth factor (EGF) generate clonal expansions called neurospheres (NS), which are widely used for therapy in animal models. However, their cellular composition is still poorly defined. Here, we report that NS derived from several embryonic and adult central nervous system (CNS)(More)
In addition to its inhibitory action, reports have shown that, in sensory neurons, GABA can be responsible for excitatory effects leading to painful behavior. The cellular mechanisms for these excitatory effects remain largely unknown. Although the high intracellular chloride concentration allows GABA(A) receptor activation to depolarize all adult sensory(More)
The presence of a hyperpolarization-activated inward current (Ih) was investigated in mouse vestibular primary neurons using the whole-cell patch-clamp technique. In current-clamp configuration, injection of hyperpolarizing currents induced variations of membrane voltage with prominent time-dependent rectification increasing with current amplitudes. This(More)
The electrophysiological properties of a subset of dorsal root ganglion (DRG) neurons microdissected from 12-day-old (E12) mouse embryos and acutely isolated were analyzed as soon as 3 after their isolation. Two classes of neurons were defined according to their mean diameter. The larger diameter class was examined in this study. They display uniform(More)