Jean-Sebastien Hoffmann

Learn More
It is currently widely accepted that genetic instability is key to cancer development. Many types of cancers arise as a consequence of a gradual accumulation of nucleotide aberrations, each mutation conferring growth and/or survival advantage. Genetic instability could also proceed in sudden bursts leading to a more drastic upheaval of structure and(More)
"Replicative stress" is one of the main factors underlying neoplasia from its early stages. Genes involved in DNA synthesis may therefore represent an underexplored source of potential prognostic markers for cancer. To this aim, we generated gene expression profiles from two independent cohorts (France, n=206; United Kingdom, n=117) of patients with(More)
Both clinical and experimental evidence illustrate that p190 and p210 BCR/ABL oncogenic tyrosine kinases induce resistance to DNA damage and confer an intrinsic genetic instability. Here, we investigated whether BCR/ABL expression could modulate nucleotide excision repair (NER). We found that ectopic expression of p210 BCR/ABL in murine lymphoid BaF3 cell(More)
DNA polymerase δ (pol δ) is one of the two main replicative polymerases in eukaryotes; it synthesizes the lagging DNA strand and also functions in DNA repair. In previous work, we demonstrated that heterozygous expression of the pol δ L604G variant in mice results in normal life span and no apparent phenotype, whereas a different substitution at the same(More)
Accurate DNA replication during S-phase is fundamental to maintain genome integrity. During this critical process, replication forks frequently encounter obstacles that impede their progression. While the regulatory pathways which act in response to exogenous replication stress are beginning to emerge, the mechanisms by which fork integrity is maintained at(More)
The repair of DNA double-strand breaks (DSB) requires processing of the broken ends to complete the ligation process. Recently, it has been shown that DNA polymerase mu (polmu) and DNA polymerase lambda (pollambda) are both involved in such processing during non-homologous end joining in vitro. However, no phenotype was observed in animal models defective(More)
We report here that DNA polymerase beta (pol beta), the base excision repair polymerase, is highly expressed in human melanoma tissues, known to be associated with UV radiation exposure. To investigate the potential role of pol beta in UV-induced genetic instability, we analyzed the cellular and molecular effects of excess pol beta. We firstly demonstrated(More)
Although DNA polymerase θ (Pol θ) is known to carry out translesion synthesis and has been implicated in DNA repair, its physiological function under normal growth conditions remains unclear. Here we present evidence that Pol θ plays a role in determining the timing of replication in human cells. We find that Pol θ binds to chromatin during early G1,(More)
Failure to restart replication forks stalled at genomic regions that are difficult to replicate or contain endogenous DNA lesions is a hallmark of BRCA2 deficiency. The nucleolytic activity of MUS81 endonuclease is required for replication fork restart under replication stress elicited by exogenous treatments. Here we investigate whether MUS81 could(More)
One of the hallmarks of cancer is the occurrence of high levels of chromosomal rearrangements as a result of inaccurate repair of double-strand breaks (DSB). Germline mutations in BRCA and RAD51 genes, involved in DSB repair, are strongly associated with hereditary breast cancer. Pol θ, a translesional DNA polymerase specialized in the replication of(More)