Jean-Pierre Hubaux

Learn More
Vehicular networks are very likely to be deployed in the coming years and thus become the most relevant form of mobile ad hoc networks. In this paper, we address the security of these networks. We provide a detailed threat analysis and devise an appropriate security architecture. We also describe some major design decisions still to be made, which in some(More)
We consider the problem of node positioning in ad hoc networks. We propose a distributed, infrastructure-free positioning algorithm that does not rely on GPS (Global Positioning System). Instead, the algorithm uses the distances between the nodes to build a relative coordinate system in which the node positions are computed in two dimensions. Despite the(More)
In military and rescue applications of mobile ad hoc networks, all the nodes belong to the same authority; therefore, they are motivated to cooperate in order to support the basic functions of the network. In this paper, we consider the case when each node is its own authority and tries to maximize the benefits it gets from the network. More precisely, we(More)
In all-wireless networks a crucial problem is to minimize energy consumption, as in most cases the nodes are battery-operated. We focus on the problem of power-optimal broadcast, for which it is well known that the broadcast nature of the radio transmission can be exploited to optimize energy consumption. Several authors have conjectured that the problem of(More)
Vehicular networks are likely to become the most relevant form of mobile ad hoc networks. In this paper, we address the security of these networks. We provide a detailed threat analysis and devise an appropriate security architecture. We also describe some major design decisions still to be made, which in some cases have more than mere technical(More)
Although many energy efficient/conserving routing protocols have been proposed for wireless sensor networks, the concentration of data traffic towards a small number of base stations remains a major threat to the network lifetime. The main reason is that the sensor nodes located near a base station have to relay data for a large part of the network and thus(More)
In contrast with conventional networks, mobile ad hoc networks usually do not provide online access to trusted authorities or to centralized servers, and they exhibit frequent partitioning due to link and node failures and to node mobility. For these reasons, traditional security solutions that require online trusted authorities or certificate repositories(More)
In this paper, we address the problem of service availability in mobile ad-hoc WANs. We present a secure mechanism to stimulate end users to keep their devices turned on, to refrain from overloading the network, and to thwart tampering aimed at converting the device into a "selfish" one. Our solution is based on the application of a tamper resistant(More)
The proliferation of hotspots based on IEEE 802.11 wireless LANs brings the promise of seamless Internet access from a large number of public locations. However, as the number of users soars, so does the risk of possible misbehavior; to protect themselves, wireless ISPs already make use of a number of security mechanisms, and require mobile stations to(More)
So far, the problem of positioning in wireless networks has been mainly studied in a non-adversarial setting. In this work, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, that we call verifiable multilateration. We then show how this mechanism(More)