Learn More
BACKGROUND In human ventricular cells, the inwardly rectifying K+ current (IK1) is very similar to that of other mammalian species, but detailed knowledge about the K+-dependent distribution of open and blocked states during rectification and about the K+-dependent modulation of inactivation on hyperpolarization is currently lacking. METHODS AND RESULTS(More)
Characteristics of the slow inward current (Isi) in human ventricular myocytes isolated from septal specimens obtained in patients undergoing corrective cardiac surgery were studied using the whole-cell clamp method. A first series of experiments was performed under normal standard superfusion. Clamping from -60 mV evoked an inward current with a threshold(More)
Abnormalities in cardiomyocyte Ca2+ handling contribute to impaired contractile function in heart failure (HF). Experiments on single ryanodine receptors (RyRs) incorporated into lipid bilayers have indicated that RyRs from failing hearts are more active than those from healthy hearts. Here, we analyzed spontaneous Ca2+ sparks (brief, localized increased in(More)
  • 1