Jean-Philippe St-Pierre

Learn More
Tissue-engineering strategies for the treatment of osteoarthritis would benefit from the ability to induce chondrogenesis in precursor cells. One such cell source is bone marrow-derived stromal cells (BMSCs). Here, we examined the effects of moderate-strength static magnetic fields (SMFs) on chondrogenic differentiation in human BMSCs in vitro. Cells were(More)
Regenerative medicine strategies for restoring articular cartilage face significant challenges to recreate the complex and dynamic biochemical and biomechanical functions of native tissues. As an approach to recapitulate the complexity of the extracellular matrix, collagen-mimetic proteins offer a modular template to incorporate bioactive and biodegradable(More)
It is an exciting time to be involved in tissue engineering and regenerative medicine (TERM) research. Despite its relative youth, the field is expanding fast and breaking new ground in both the laboratory and clinically. In this "Year in Review," we highlight some of the high-impact advances in the field. Building upon last year's article, we have(More)
Recapitulation of the articular cartilage microenvironment for regenerative medicine applications faces significant challenges due to the complex and dynamic biochemical and biomechanical nature of native tissue. Towards the goal of biomaterial designs that enable the temporal presentation of bioactive sequences, recombinant bacterial collagens such as(More)
Medial calcification in the human aorta accumulates during aging and is known to be aggravated in several diseases. Atherosclerosis, another major cause of cardiovascular calcification, shares some common aggravators. However, the mechanisms of cardiovascular calcification remain poorly understood. To elucidate the relationship between medial aortic(More)
A major challenge to the successful clinical application of bioengineered cartilage remains its integration to surrounding tissues upon implantation. One way to address this consists of generating biphasic constructs composed of articular cartilage formed in vitro on the top surface and integrated with the porous sub-surface of a bone substitute material -(More)
Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the(More)
Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into(More)
Tissue engineering strategies for repairing and regenerating articular cartilage face critical challenges to recapitulate the dynamic and complex biochemical microenvironment of native tissues. One approach to mimic the biochemical complexity of articular cartilage is through the use of recombinant bacterial collagens as they provide a well-defined(More)
A major challenge for cartilage tissue engineering remains the proper integration of constructs with surrounding tissues in the joint. Biphasic osteochondral constructs that can be anchored in a joint through bone ingrowth partially address this requirement. In this study, a methodology was devised to generate a cell-mediated zone of calcified cartilage(More)