Learn More
Activation of cell division in the root apical meristem after germination is essential for postembryonic root development. Arabidopsis plants homozygous for a mutation in the ROOT MERISTEMLESS1 (RML1) gene are unable to establish an active postembryonic meristem in the root apex. This mutation abolishes cell division in the root but not in the shoot. We(More)
Cyclin-dependent kinases (CDKs) control the key transitions in the eukaryotic cell cycle. All the CDKs known to control G(2)/M progression in yeast and animals are distinguished by the characteristic PSTAIRE motif in their cyclin-binding domain and are closely related. Higher plants contain in addition a number of more divergent non-PSTAIRE CDKs with still(More)
Regulation of disulfide dithiol exchange has become increasingly important in our knowledge of plant life. Initially discovered as regulators of light-dependent malate biosynthesis in the chloroplast, plant thioredoxins are now implicated in a large panel of reactions related to metabolism, defense and development. In this review we describe the numerous(More)
The respective involvement of transcriptional and post-transcriptional mechanisms in coupling H3 and H4 histone gene expression to the S phase of the cell cycle has been studied in synchronized tobacco cells. Induction of histone gene expression at the G1/S transition is shown to be essentially directed by an increase in the transcription rate in response(More)
Four full-length and one partial cDNA clones encoding four different A-type cyclins were isolated from a tobacco S-phase-specific library. The corresponding mRNAs displayed sequential appearance and disappearance during the cell cycle of highly synchronized suspension-cultured tobacco cells. Sequence analysis showed that the plant A-type cyclins can be(More)
The evolution of adenosine 3',5'-cyclic monophosphate (cAMP) levels was investigated in synchronised tobacco BY-2 cells by virtue of a method based on immunoaffinity purification and analysis on electrospray tandem mass spectrometry. A transient peak in cAMP content was observed during the S and G1 phases of the cell cycle. Application of the prostaglandin(More)
During the 70s and 80s two plant thioredoxin systems were identified. The chloroplastic system is composed of a ferredoxin-dependent thioredoxin, with two thioredoxin types (m and f) regulating the activity of enzymes implicated in photosynthetic carbon assimilation. In the cytosol of heterotrophic tissues, an NADP dependent thioredoxin reductase and a(More)
The availability of the Arabidopsis genome revealed the complexity of the gene families implicated in dithiol disulfide exchanges. Most non-green organisms present less dithiol oxidoreductase genes. The availability of the almost complete genome sequence of rice now allows a systematic search for thioredoxins, glutaredoxins and their reducers. This shows(More)
Although the basic mechanisms which control the progression through the cell cycle appear to be conserved in all higher eukaryotes, the unique features of the plant developmental programme must be somehow reflected in a plant-specific regulation of the factors which control cell division. In the last few years, considerable progress has been achieved in(More)