Jean-Philippe Hugnot

Learn More
Adult human and rodent brains contain neural stem and progenitor cells, and the presence of neural stem cells in the adult rodent spinal cord has also been described. Here, using electron microscopy, expression of neural precursor cell markers, and cell culture, we investigated whether neural precursor cells are also present in adult human spinal cord. In(More)
In humans and rodents the adult spinal cord harbors neural stem cells located around the central canal. Their identity, precise location, and specific signaling are still ill-defined and controversial. We report here on a detailed analysis of this niche. Using microdissection and glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP)(More)
Neurosphere cultures provide a useful model to study neural stem/progenitor cells (NSC/NPCs). The degree to which neurospheres (NS) retain their regional identity in vitro has, however, been questioned. Here, NS obtained from mouse embryonic cortex, striatum or spinal cord were compared after differentiation. Neurons from cortical NS formed well ordered(More)
BACKGROUND In the cerebellum of newborn S100B-EGFP mice, we had previously noted the presence of a large population of S100B-expressing cells, which we assumed to be immature Bergmann glial cells. In the present study, we have drawn on this observation to establish the precise spatio-temporal pattern of S100B gene expression in the embryonic cerebellum. (More)
NTERA2 cells are a human neural cell line generating neurons after exposure to retinoic acid and, as such, are widely used as a model of neurogenesis. We report that these cells form spheres when grown in serum-free medium supplemented with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). These spheres were found to express markers(More)
MHP36 is a nestin bFGF-dependent cell line isolated from embryonic hippocampus using a thermolabile form of SV40 T antigen. When grafted in ischemic hippocampus MHP36 cells differentiate and alleviate the cognitive deficit associated with the lesion. We report here in vitro features of MHP36 cells. First, we found that T Ag expression was not necessary for(More)
Neural stem cells cultured with fibroblast growth factor 2 (FGF2)/epidermal growth factor (EGF) generate clonal expansions called neurospheres (NS), which are widely used for therapy in animal models. However, their cellular composition is still poorly defined. Here, we report that NS derived from several embryonic and adult central nervous system (CNS)(More)
BACKGROUND Amyotrophic lateral sclerosis (ALS) is characterized by a gradual muscular paralysis resulting from progressive motoneurons death. ALS etiology remains unknown although it has been demonstrated to be a multifactorial disease involving several cellular partners. There is currently no effective treatment. Even if the effect of exercise is under(More)
Microarray technology provides a unique opportunity to examine gene expression patterns in human embryonic stem cells (hESCs). We performed a meta-analysis of 38 original studies reporting on the transcriptome of hESCs. We determined that 1,076 genes were found to be overexpressed in hESCs by at least three studies when compared to differentiated cell(More)
BACKGROUND The adult central nervous system (CNS) contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin+ Sox2+ neural multipotential cells from the adult human(More)