Learn More
Response to a challenging environment proceeds through adaptation, the result of stochastic processes (chance) and of the influence of history (constraint) [1]. Adaptations, such as pesticide resistance, provide an opportunity to study historical constraints. Insecticides, widely used since the mid 1950s, have elicited numerous cases of resistance. Specific(More)
Synthetic oligonucleotides (oligomers) complementary to vesicular stomatitis virus (VSV) N protein mRNA have specific antiviral properties at concentrations lower than 1 microM when they are covalently linked to poly(L-lysine) (PLL). Since it is generally postulated that antisense oligomers act at the translational level, oligomers with potential targets on(More)
BACKGROUND The spleen tyrosine kinase (Syk) is recognized as a potential pharmaceutical target for the treatment of type I hypersensitivity reactions including allergic rhinitis, urticaria, asthma, and anaphylaxis because of its critical position upstream of immunoreceptor signaling complexes that regulate inflammatory responses in leukocytes. OBJECTIVE(More)
Antisense oligomers constitute an attractive class of specific tools for genetic analysis and for potential therapeutic applications. Targets with different cellular locations have been described, such as mRNA translation initiation sites, pre-mRNA splicing sites, or the genes themselves. However the mechanism(s) of action and the intracellular distribution(More)
BACKGROUND INFORMATION Rho GTPases are involved in many biological processes and participate in cancer development. Their activation is catalysed by exchange factors [RhoGEFs (Rho GTPase guanine nucleotide-exchange factor)] of the Dbl family. RhoGEFs display proto-oncogenic features, thus appearing as candidate targets for anticancer drugs.(More)
RhoGEFs (guanine nucleotide exchange factors of the Rho GTPase family) are upstream regulators of cell adhesion and migration pathways, thus representing attractive yet relatively unexplored targets for the development of anti-invasive drugs. We screened for chemical inhibitors of TrioN, the N-terminal GEF domain of the multidomain Trio protein, and(More)
Several groups have reported the use of antisense oligonucleotides to inhibit c-myc gene expression and study its biological role. However high concentrations of free oligonucleotides were generally needed. To lower their concentration and stabilize the antisense effect against c-myc, oligonucleotides were covalently linked to poly(L-lysine) and(More)
We have previously shown that antisense oligomers linked to poly(L-lysine) (PLL) exhibit antiviral properties against vesicular stomatitis virus (VSV) at concentrations lower than 1 microM. The conjugation to PLL provides an interesting alternative to natural or neutral oligomers to increase the biological effects of antisense oligomers. The internalization(More)
The bacterial RNA polymerase (RNAP) is an essential enzyme that is responsible for making RNA from a DNA template and is targeted by several antibiotics. Rifampicin was the first of such antibiotics to be described and is one of the most efficient anti-tuberculosis drugs in use. In the past five years, structural studies of bacterial RNAP and the resolution(More)