Jean-Paul Cerri

Learn More
This article deals with the determination of the Euclidean minimum M(K) of a totally real number field K of degree n ≥ 2, using techniques from the geometry of numbers. Our improvements of existing algorithms allow us to compute Euclidean minima for fields of degree 2 to 8 and small discriminants, most of which were previously unknown. Tables are given at(More)
We study the Euclidean property for totally indefinite quaternion fields. In particular, we establish the complete list of norm-Euclidean such fields over imaginary quadratic number fields. This enables us to exhibit an example which gives a negative answer to a question asked by Eichler. The proofs are both theoretical and algorithmic.
  • 1