Learn More
Phosphorylation of Thr161, a residue conserved in all members of the cdc2 family, has been reported to be absolutely required for the catalytic activity of cdc2, the major regulator of eukaryotic cell cycle. In the present work, we have purified from starfish oocytes a kinase that specifically activates cdc2 in a cyclin-dependent manner through(More)
We have purified to near homogeneity the M-phase-specific protein kinase from starfish oocytes at first meiotic metaphase, using an improved procedure based on affinity chromatography on the immobilized yeast protein suc1. As already reported, this is identical to MPF, the cytoplasmic factor that controls entry of eukaryotic cells into M-phase. MPF is a(More)
A potential p120 GTPase-activating protein (RasGAP) effector, G3BP (RasGAP Src homology 3 [SH3] binding protein), was previously identified based on its ability to bind the SH3 domain of RasGAP. Here we show that G3BP colocalizes and physically interacts with RasGAP at the plasma membrane of serum-stimulated but not quiescent Chinese hamster lung(More)
Mitogen activation of mRNA decay pathways likely involves specific endoribonucleases, such as G3BP, a phosphorylation-dependent endoribonuclease that associates with RasGAP in dividing but not quiescent cells. G3BP exclusively cleaves between cytosine and adenine (CA) after a specific interaction with RNA through the carboxyl-terminal RRM-type RNA binding(More)
p40MO15, a cdc2-related protein, is the catalytic subunit of the kinase (CAK, cdk-activating kinase) responsible for Thr161/Thr160 phosphorylation and activation of cdk1/cdk2. We have found that strong overexpression of p40MO15 only moderately increases CAK activity in Xenopus oocytes, indicating that a regulatory CAK subunit (possibly a cyclin-like(More)
We have studied the posttranslational modifications of the 52-kD protein, an estrogen-regulated autocrine mitogen secreted by several human breast cancer cells in culture (Westley, B., and H. Rochefort, 1980, Cell, 20:353-362). The secreted 52-kD protein was found to be phosphorylated mostly (94%) on high-mannose N-linked oligosaccharide chains, and(More)
Of the several strategies that eukaryotes have evolved to modulate transcription factor activity, phosphorylation is regarded as one of the major mechanisms in signal-dependent transcriptional control. To conclusively demonstrate that the human sex-determining gene SRY is affected by such a post-translational control mechanism, we have analyzed its(More)
Specific inhibition of types 1 and 2A protein phosphatases by microinjection of okadaic acid (OA) into starfish oocytes induced germinal vesicle breakdown and activation of M phase-promoting factor (MPF) and histone H1 kinase. The effects were evident in immature oocytes arrested at first meiotic prophase as well as in fully mature oocytes arrested at the(More)
Exit from metaphase of the cell cycle requires inactivation of MPF, a stoichiometric complex between the cdc2 catalytic and the cyclin B regulatory subunits, as well as that of cyclin A-cdc2 kinase. Inactivation of both complexes depends on proteolytic degradation of the cyclin subunit, yet cyclin proteolysis is not sufficient to inactivate the H1 kinase(More)
The binding of Ca2+ and Mg2+ to four calmodulins (SynCaM 1, SynCaM 8, SynCaM 12A, and SynCaM 18A) has been studied by ESI-MS. The mass spectra were recorded by dissolving the apoproteins in methanol/water (20/80, v/v) containing 1 mM CaCl2 or 1 mM MgCl2 and the pH adjusted to 6.0 with ammonia. The carrier solvent was methanol/water (20/80, v/v). In the case(More)