Jean-Paul Caltagirone

Learn More
This paper is devoted to the numerical simulation of wave breaking. It presents the results of a numerical workshop that was held during the conference LOMA04. The objective is to compare several mathematical models (compressible or incompressible) and associated numerical methods to compute the flow field during a wave breaking over a reef. The methods(More)
Since the last decades, extensive work have been done on the numerical modeling of mono-frequency sonoreactors, we here consider the modeling of dual-frequency sonoreactors. We first present the basic features of the CAMUS code (CAvitating Medium under UltraSound), for mono-frequency excitation. Computation at low, medium and high frequency are presented.(More)
The propagation of ultrasound through a liquid induces the growth of inceptions and germs into bubbles. In a low frequency reactor, fragmentary transient bubbles emerge due to the acoustic driving. They violently collapse in one cycle and fragment into many smaller bubbles than in turn cavitate. This violent collapse is responsible for the mechanical(More)
The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to(More)
The scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier-Stokes equations, in air and water, coupled with a dynamic subgrid scale turbulence model (Large Eddy Simulation, LES). An original numerical tool is used for the complete description of the plunging breaking(More)
In 1999, Jean-Paul Caltagirone and Jérô me Breil have developed in their paper [Caltagirone, J. Breil, Sur une méthode de projection vectorielle pour la résolution des e ´quations de Navier–Stokes, C.R. Acad. Sci. Paris 327(Série II b) (1999) 1179–1184] a new method to compute a divergence-free velocity. They have used the grad(div) operator to extract the(More)
We present a new fast vector penalty-projection method (VPP ε), issued from noticeable improvements of previous works [7, 3, 4], to efficiently compute the solution of unsteady Navier-Stokes/Brinkman problems governing incompressible multiphase viscous flows. The method is also efficient to solve anisotropic Darcy problems. The key idea of the method is to(More)