Jean N. Manirarora

Learn More
BACKGROUND Defects in APC and regulatory cells are associated with diabetes development in NOD mice. We have shown previously that NOD APC are not effective at stimulating CD4(+)CD25(+) regulatory cell function in vitro. We hypothesize that failure of NOD APC to properly activate CD4(+)CD25(+) regulatory cells in vivo could compromise their ability to(More)
Regulatory T lymphocytes (Tregs) expressing the Foxp3 transcription factor are critical modulators of autoimmunity. Foxp3(+) Tregs may develop in the thymus as a population distinct from conventional Foxp3(-) αβ T cells (Tconvs). Alternatively, plasticity in Foxp3 expression may allow for the interconversion of mature Tregs and Tconvs. We examined >160,000(More)
Naturally occurring regulatory T cells (Tregs) play a pivotal role in the maintenance of self-tolerance due to their intrinsic immunosuppressive activity. Currently, a number of human clinical trials are being conducted to investigate the roles of Tregs in treating various immune-mediated disorders. Traditionally, the suppressive activity of Tregs is(More)
Dendritic cells (DCs) from NOD mice produced high levels of IL-12 that induce IFNγ-producing T cells involved in diabetes development. We propose to utilize the microorganism ability to induce tolerogenic DCs to abrogate the proinflammatory process and prevent diabetes development. NOD DCs were stimulated with Lactobacilli (nonpathogenic bacteria targeting(More)
  • 1