Jean Mukherjee

Learn More
Hemolytic-uremic syndrome (HUS) is a serious complication which is predominantly associated in children with infection by Shiga toxin-producing Escherichia coli (STEC). By using HuMAb-Mouse (Medarex) animals, human monoclonal antibodies (Hu-MAbs) were developed against Shiga toxin 1 (Stx1) for passive immunotherapy of HUS. Ten stable hybridomas comprised of(More)
Shiga toxin-producing Escherichia coli (STEC) is a major cause of severe food-borne disease worldwide, and two Shiga toxins, Stx1 and Stx2, are primarily responsible for the serious disease consequence, hemolytic-uremic syndrome (HUS). Here we report identification of a panel of heavy-chain-only antibody (Ab) V(H) (VHH) domains that neutralize Stx1 and/or(More)
Hemolytic-uremic syndrome (HUS) is a serious complication predominantly associated with infection by enterohemorrhagic Escherichia coli (EHEC), such as E. coli O157:H7. EHEC can produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2), both of which are exotoxins comprised of active (A) and binding (B) subunits. In piglets and mice, Stx can induce fatal(More)
Antitoxins for botulinum neurotoxins (BoNTs) and other toxins are needed that can be produced economically with improved safety and shelf-life properties compared to conventional therapeutics with large-animal antisera. Here we show that protection from BoNT lethality and rapid BoNT clearance through the liver can be elicited in mice by administration of a(More)
Current therapies for most acute toxin exposures are limited to administration of polyclonal antitoxin serum. We have shown that VHH-based neutralizing agents (VNAs) consisting of two or more linked, toxin-neutralizing heavy-chain-only VH domains (VHHs), each binding distinct epitopes, can potently protect animals from lethality in several intoxication(More)
Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant(More)
Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid(More)
BACKGROUND Inflammatory airway disease (IAD) in horses, similar to asthma in humans, is a common cause of chronic poor respiratory health and exercise intolerance due to airway inflammation and exaggerated airway constrictive responses. Human rhinovirus is an important trigger for the development of asthma; a similar role for viral respiratory disease in(More)
Hemolytic uremic syndrome (HUS) leading to acute kidney failure, is a condition linked to the production of primarily Shiga toxin 2 (Stx2) by some E. coli serotypes. We have previously shown that Stx2 A subunit-specific human monoclonal antibody (HuMAb) 5C12, and B subunit-specific HuMAb 5H8 inhibit cultured cell death, and protect mice and piglets from(More)
Infection of children with Shiga toxin (Stx)-producing Escherichia coli (STEC) can lead to hemolytic-uremic syndrome (HUS) in 5 to 10% of patients. Stx2, one of two toxins liberated by the bacterium, is directly linked with HUS. We have previously shown that Stx-specific human monoclonal antibodies protect STEC-infected animals from fatal systemic(More)