Jean-Michel Redoute

Learn More
This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback(More)
Ambulatory blood pressure monitors based on pulse transit time are limited by the challenge of changing vascular tone. This study focuses on the use of the carotid artery as an alternative location for arterial pulse acquisition. We use continuous wave radio frequency (RF) radar coupled directly to the body to detect the pulse wave signal. We have shown(More)
This paper presents an ultra low-power integrated interface for capacitive and resistive MEMS and sensors, intended for use in biomedical applications. The interface encodes the sensed data in the time between transmitted UWB pulses: this reduces the number of transmitted bits and benefits the power consumption. The interface was designed and fabricated in(More)