Learn More
In several neurological disorders including hyperhomocysteinemia, homocysteine (Hcy) accumulates in the brain, and acts as a potent neurotoxin. However, the molecular mechanisms induced by increased levels of Hcy in brain are not well understood. Here we show an activation of the extracellular signal-regulated kinases (ERK1 and ERK2) and the downstream(More)
The molecular mechanisms that lead to the cognitive defects characteristic of Down syndrome (DS), the most frequent cause of mental retardation, have remained elusive. Here we use a transgenic DS mouse model (152F7 line) to show that DYRK1A gene dosage imbalance deregulates chromosomal clusters of genes located near neuron-restrictive silencer factor(More)
BACKGROUND/AIMS Cystathionine beta synthase (CBS) deficiency leads to severe hyperhomocysteinemia, which confers diverse clinical manifestations, notably fatty liver. Recently, abnormal lipid metabolism has been demonstrated in CBS-deficient mice, a murine model of severe hyperhomocysteinemia. To gain further insights into effects of CBS deficiency on(More)
Trisomy 21 or Down syndrome is a chromosomal disorder resulting from the presence of all or part of an extra Chromosome 21. It is a common birth defect, the most frequent and most recognizable form of mental retardation, appearing in about 1 of every 700 newborns. Although the syndrome had been described thousands of years before, it was named after John(More)
Cystathionine beta synthase (CBS) is a crucial regulator of plasma concentrations of homocysteine. Severe hyperhomocysteinemia due to CBS deficiency confers diverse clinical manifestations, notably pulmonary thrombotic disease. However, the association between hyperhomocysteinemia and chronic obstructive pulmonary disease is not well understood. To(More)
BACKGROUND & AIMS Cystathionine beta-synthase (CBS) deficiency causes severe hyperhomocysteinemia, which confers diverse clinical manifestations, notably liver disease. To investigate this aspect of hyperhomocysteinemia, we performed a thorough investigation of liver pathology in CBS-deficient mice, a murine model of severe hyperhomocysteinemia. METHODS(More)
To generate new chromosome 21 markers in a region that is critical for the pathogenesis of Down syndrome (D21S55-MX1), we used pulsed field gel electrophoresis (PFGE) to isolate a 600-kb NruI DNA fragment from the WA17 hybrid cell line, which has retained chromosome 21 as the only human material. This fragment, which contains the oncogene ETS2, was used to(More)
Hyperhomocysteinemia leads to diverse clinical manifestations, notably liver disease. The pathogenicity of homocysteine is believed to be due to its ability to produce oxidative stress. Paraoxonase-1 (Pon1), a phase I xenobiotic-metabolizing enzyme (XME) synthesized by liver with anti-oxidative properties within the circulating system is down regulated in(More)
Hyperhomocysteinemia is characterized by an increase of plasma homocysteine, a thiol-containing amino acid produced during methionine metabolism. Hyperhomocysteinemia has often been associated with coronary artery disease, vascular thrombosis and the development of premature atherosclerosis. We have recently demonstrated that the supplementation of(More)
The mouse homeobox gene Barhl1 plays a central role in cerebellum development and its expression is activated by the transcription factor Math1 which is involved in bone morphogenetic protein response pathways. We studied the human ortholog BARHL1 and we found that human, mouse, monkey, rat, and zebrafish orthologs were highly conserved and are members of(More)