Learn More
Seven hybridoma clones, producing antibodies directed against the beta 2-subunit of Escherichia coli tryptophan synthase, have been obtained from mouse cells. To test whether the corresponding monoclonal antibodies recognize different epitopes on beta 2, an ELISA double antibody binding system has been developed and is reported here. The antigen is first(More)
The present study assessed the antimicrobial activities of various natural products belonging to the terpenoids, alkaloids and phenolics against a collection of Gram-negative multidrug-resistant (MDR) bacteria. The results demonstrated that most of the compounds were extruded by bacterial efflux pumps. In the presence of the efflux pump inhibitor(More)
Gram-negative bacteria are responsible for a large proportion of antibiotic-resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds,(More)
Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that(More)
BACKGROUND Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The number and activity of efflux pumps and outer membrane proteins that constitute porins play major roles in the definition of intrinsic resistance in Gram-negative bacteria that is altered under antibiotic exposure. METHODOLOGY/PRINCIPAL FINDINGS(More)
Multidrug-resistant Enterobacter aerogenes strains are increasingly isolated in Europe and especially in France. Treatment leads to imipenem resistance, because of a lack of porin. We studied the evolution of resistance in 29 strains isolated from four patients during their clinical course. These strains belonged to the prevalent epidemiological type(More)
In this study, we aimed to answer the following question: 'How does a bacterium become so resistant to a given antibiotic even though the levels of antibiotic to which it has become resistant remained constant in the patient?'Escherichia coli AG100 strain induced to high-level resistance due to overexpression of an AcrAB efflux pump was serially cultured in(More)
Chemoresistance presents a general health problem concerning the therapy of infectious disease and cancer. In this context, the worldwide dissemination of "multidrugresistant" (MDR) pathogens has severely reduced the efficacy of our antimicrobial weapons and dramatically increased the frequency of therapeutic failure. Because MDR bacterial infections(More)
Porins form channels allowing the transport of molecules across lipid bilayer membranes. Their structure, location and large number on the bacterial surface lend them multiple functions. Porin loops are potential targets for adhesion to other cells and binding of bactericidal compounds to the surface of Gram-negative bacteria. Variation of the loop(More)
Porins allow exchanges between bacteria and their environment. In the gram-negative food-borne pathogen Campylobacter jejuni two porins, major outer membrane protein (MOMP) and Omp50, have been identified. MOMP is synthesized at a very high level under laboratory culture conditions, suggesting that its promoter functions very efficiently under these(More)