Jean - Marc Reichhart

Learn More
Insects respond to microbial infection by the rapid and transient expression of several genes encoding potent antimicrobial peptides. Herein we demonstrate that this antimicrobial response of Drosophila is not aspecific but can discriminate between various classes of microorganisms. We first observe that the genes encoding antibacterial and antifungal(More)
Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections.(More)
The production of antimicrobial peptides is an important aspect of host defense in multicellular organisms. In Drosophila, seven antimicrobial peptides with different spectra of activities are synthesized by the fat body during the immune response and secreted into the hemolymph. Using GFP reporter transgenes, we show here that all seven Drosophila(More)
A hallmark of the systemic antimicrobial response of Drosophila is the synthesis by the fat body of several antimicrobial peptides which are released into the hemolymph in response to a septic injury. One of these peptides, drosomycin, is active primarily against fungi. Using a drosomycin-green fluorescent protein (GFP) reporter gene, we now show that in(More)
Oligonucleotide DNA microarrays were used for a genome-wide analysis of immune-challenged Drosophila infected with Gram-positive or Gram-negative bacteria, or with fungi. Aside from the expression of an established set of immune defense genes, a significant number of previously unseen immune-induced genes were found. Genes of particular interest include(More)
We report the molecular characterization of the immune deficiency (imd) gene, which controls antibacterial defense in Drosophila. imd encodes a protein with a death domain similar to that of mammalian RIP (receptor interacting protein), a protein that plays a role in both NF-kappaB activation and apoptosis. We show that imd functions upstream of the DmIKK(More)
In this paper we report a recessive mutation, immune deficiency (imd), that impairs the inducibility of all genes encoding antibacterial peptides during the immune response of Drosophila. When challenged with bacteria, flies carrying this mutation show a lower survival rate than wild-type flies. We also report that, in contrast to the antibacterial(More)
The antifungal defense of Drosophila is controlled by the spaetzle/Toll/cactus gene cassette. Here, a loss-of-function mutation in the gene encoding a blood serine protease inhibitor, Spn43Ac, was shown to lead to constitutive expression of the antifungal peptide drosomycin, and this effect was mediated by the spaetzle and Toll gene products. Spaetzle was(More)
We have isolated two Drosophila lines that carry point mutations in the gene coding for the NF-KB-like factor DIF. Like mutants of the Toll pathway, Dif mutant flies are susceptible to fungal but not to bacterial infections. Genetic epistasis experiments demonstrate that Dif mediates the Toll-dependent control of the inducibility of the antifungal peptide(More)
The hallmark of the innate immune response of higher insects is the rapid and transient synthesis of a battery of broad spectrum antimicrobial peptides by the fat body. The control of the genes encoding these peptides involves cis-regulatory promoter elements homologous to sequences functional in mammalian acute-phase genes. Study of immune-deficient(More)